Stack-of-Tasks

As explained in class dynamicgraph::sot::FeatureAbstract,

\[ {\bf E}(t) = {\bf e}({\bf q}(t), t)= {\bf s}({\bf q}(t)) - {\bf s}^*(t) \]

thus:

\[ \dot{\bf E}= \frac{\partial{\bf e}}{\partial{\bf q}} \dot{\bf q} + \frac{\partial{\bf e}}{\partial t} \\ \]

The features are responsible for computing:

  • $ {\bf E}(t) $
  • $ \frac{\partial{\bf e}}{\partial t} $
  • $ \frac{\partial{\bf e}}{\partial{\bf q}} $

The class dynamicgraph::sot::Task takes some features outputs as inputs. It imposes an exponential decrease, i.e. $ \dot{\bf E} = -\lambda {\bf E} $. It gives:

\[ -\lambda {\bf e} = \frac{\partial{\bf e}}{\partial{\bf q}} \dot{\bf q} + \frac{\partial{\bf e}}{\partial t} \]

and computes solutions as:

\[ \dot{\bf q} = \frac{\partial{\bf e}}{\partial{\bf q}}^{\dagger} \left( - \lambda {\bf e} - \frac{\partial{\bf e}}{\partial t} \right) + K v \]

where:

  • $\frac{\partial{\bf e}}{\partial{\bf q}}^{\dagger}$ is the pseudo-inverse of $\frac{\partial{\bf e}}{\partial{\bf q}}$,
  • $\dot{\bf q} \in \mathbb{R}^n$,
  • $K \in \mathcal{M}_{n,m}(\mathbb{R})$ is a base of the kernel of $\frac{\partial{\bf e}}{\partial{\bf q}}$, of dimension $m$,
  • and $v$ spans $\mathbb{R}^m$ so that $K v$ spans the kernel of $\frac{\partial{\bf e}}{\partial{\bf q}}$.

$v$ is a free parameters left to tasks of lower priority.



sot-core
Author(s): Olivier Stasse, ostasse@laas.fr
autogenerated on Tue Oct 24 2023 02:26:32