discrete_bayesian_query_sample.py
Go to the documentation of this file.
00001 #!/usr/bin/env python
00002 # -*- coding: utf-8 -*-
00003 # Author: Yuki Furuta <furushchev@jsk.imi.i.u-tokyo.ac.jp>
00004 
00005 import itertools as it
00006 
00007 from libpgm.discretebayesiannetwork import DiscreteBayesianNetwork
00008 from libpgm.graphskeleton import GraphSkeleton
00009 from libpgm.nodedata import NodeData
00010 from libpgm.tablecpdfactorization import TableCPDFactorization
00011 
00012 import rospy
00013 from pgm_learner.msg import DiscreteNode, DiscreteNodeState, ConditionalProbability
00014 from pgm_learner.srv import DiscreteQuery, DiscreteQueryRequest
00015 
00016 def q_without_ros():
00017     skel = GraphSkeleton()
00018     skel.V = ["prize_door", "guest_door", "monty_door"]
00019     skel.E = [["prize_door", "monty_door"],
00020               ["guest_door", "monty_door"]]
00021     skel.toporder()
00022     nd = NodeData()
00023     nd.Vdata = {
00024         "prize_door": {
00025             "numoutcomes": 3,
00026             "parents": None,
00027             "children": ["monty_door"],
00028             "vals": ["A", "B", "C"],
00029             "cprob": [1.0/3, 1.0/3, 1.0/3],
00030         },
00031         "guest_door": {
00032             "numoutcomes": 3,
00033             "parents": None,
00034             "children": ["monty_door"],
00035             "vals": ["A", "B", "C"],
00036             "cprob": [1.0/3, 1.0/3, 1.0/3],
00037         },
00038         "monty_door": {
00039             "numoutcomes": 3,
00040             "parents": ["prize_door", "guest_door"],
00041             "children": None,
00042             "vals": ["A", "B", "C"],
00043             "cprob": {
00044                 "['A', 'A']": [0., 0.5, 0.5],
00045                 "['B', 'B']": [0.5, 0., 0.5],
00046                 "['C', 'C']": [0.5, 0.5, 0.],
00047                 "['A', 'B']": [0., 0., 1.],
00048                 "['A', 'C']": [0., 1., 0.],
00049                 "['B', 'A']": [0., 0., 1.],
00050                 "['B', 'C']": [1., 0., 0.],
00051                 "['C', 'A']": [0., 1., 0.],
00052                 "['C', 'B']": [1., 0., 0.],
00053             },
00054         },
00055     }
00056     bn = DiscreteBayesianNetwork(skel, nd)
00057     fn = TableCPDFactorization(bn)
00058 
00059     query = {
00060         "prize_door": ["A","B","C"],
00061     }
00062     evidence = {
00063         "guest_door": "A",
00064         "monty_door": "B",
00065     }
00066 
00067     res = fn.condprobve(query, evidence)
00068     print res.vals
00069     print res.scope
00070     print res.card
00071     print res.stride
00072 
00073 def monty_door_prob(prize, guest):
00074     if prize == guest:
00075         ret = [0.5,0.5]
00076         ret.insert(ord(prize)-ord("A"), 0.)
00077     else:
00078         s = set(["A","B","C"])
00079         d = s.difference([prize, guest])
00080         pos = ord(d.pop()) - ord("A")
00081         ret = [0.,0.]
00082         ret.insert(pos, 1.)
00083     return ret
00084 
00085 def q():
00086     rospy.init_node("discrete_bayesian_query_sample")
00087     query_func = rospy.ServiceProxy("pgm_learner/discrete/query", DiscreteQuery)
00088 
00089 
00090     prize_door = DiscreteNode()
00091     prize_door.name = "prize_door"
00092     prize_door.children = ["monty_door"]
00093     prize_door.outcomes = ["A", "B", "C"]
00094     prize_door.CPT = [ConditionalProbability(values=prize_door.outcomes,
00095                                              probabilities=[1.0/3,1.0/3,1.0/3])]
00096     guest_door = DiscreteNode()
00097     guest_door.name = "guest_door"
00098     guest_door.children = ["monty_door"]
00099     guest_door.outcomes = ["A", "B", "C"]
00100     guest_door.CPT = [ConditionalProbability(values=guest_door.outcomes,
00101                                              probabilities=[1.0/3,1.0/3,1.0/3])]
00102     monty_door = DiscreteNode()
00103     monty_door.name = "monty_door"
00104     monty_door.parents = ["prize_door", "guest_door"]
00105     monty_door.outcomes = ["A", "B", "C"]
00106     for prize, guest in it.product(["A","B","C"], repeat=2):
00107         print str([prize, guest])
00108         print monty_door_prob(prize, guest)
00109         monty_door.CPT += [ConditionalProbability(values=[prize, guest],
00110                                                   probabilities=monty_door_prob(prize=prize, guest=guest))]
00111 
00112     req = DiscreteQueryRequest()
00113     req.nodes = [prize_door, guest_door, monty_door]
00114     req.evidence = [DiscreteNodeState(node="guest_door", state="A"),
00115                     DiscreteNodeState(node="monty_door", state="B"),]
00116     req.query = ["prize_door"]
00117     print query_func(req)
00118 
00119 if __name__ == '__main__':
00120     q()


pgm_learner
Author(s): Yuki Furuta
autogenerated on Sat Sep 9 2017 02:33:39