subset.py
Go to the documentation of this file.
00001 #!/usr/bin/env python
00002 from sys import argv, exit, stdout, stderr
00003 from random import randint
00004 
00005 method = 0
00006 global n
00007 global dataset_filename
00008 subset_filename = ""
00009 rest_filename = ""
00010 
00011 def exit_with_help():
00012         print("""\
00013 Usage: {0} [options] dataset number [output1] [output2]
00014 
00015 This script selects a subset of the given dataset.
00016 
00017 options:
00018 -s method : method of selection (default 0)
00019      0 -- stratified selection (classification only)
00020      1 -- random selection
00021 
00022 output1 : the subset (optional)
00023 output2 : rest of the data (optional)
00024 If output1 is omitted, the subset will be printed on the screen.""".format(argv[0]))
00025         exit(1)
00026 
00027 def process_options():
00028         global method, n
00029         global dataset_filename, subset_filename, rest_filename
00030         
00031         argc = len(argv)
00032         if argc < 3:
00033                 exit_with_help()
00034 
00035         i = 1
00036         while i < len(argv):
00037                 if argv[i][0] != "-":
00038                         break
00039                 if argv[i] == "-s":
00040                         i = i + 1
00041                         method = int(argv[i])
00042                         if method < 0 or method > 1:
00043                                 print("Unknown selection method {0}".format(method))
00044                                 exit_with_help()
00045                 i = i + 1
00046 
00047         dataset_filename = argv[i]
00048         n = int(argv[i+1])
00049         if i+2 < argc:
00050                 subset_filename = argv[i+2]
00051         if i+3 < argc:
00052                 rest_filename = argv[i+3]
00053 
00054 def main():
00055         class Label:
00056                 def __init__(self, label, index, selected):
00057                         self.label = label
00058                         self.index = index
00059                         self.selected = selected
00060 
00061         process_options()
00062         
00063         # get labels
00064         i = 0
00065         labels = []
00066         f = open(dataset_filename, 'r')
00067         for line in f:
00068                 labels.append(Label(float((line.split())[0]), i, 0))
00069                 i = i + 1
00070         f.close()
00071         l = i
00072         
00073         # determine where to output
00074         if subset_filename != "":
00075                 file1 = open(subset_filename, 'w')
00076         else:
00077                 file1 = stdout
00078         split = 0
00079         if rest_filename != "":
00080                 split = 1       
00081                 file2 = open(rest_filename, 'w')
00082         
00083         # select the subset
00084         warning = 0
00085         if method == 0: # stratified
00086                 labels.sort(key = lambda x: x.label)
00087                 
00088                 label_end = labels[l-1].label + 1
00089                 labels.append(Label(label_end, l, 0))
00090 
00091                 begin = 0
00092                 label = labels[begin].label
00093                 for i in range(l+1):
00094                         new_label = labels[i].label
00095                         if new_label != label:
00096                                 nr_class = i - begin
00097                                 k = i*n//l - begin*n//l
00098                                 # at least one instance per class
00099                                 if k == 0:
00100                                         k = 1
00101                                         warning = warning + 1
00102                                 for j in range(nr_class):
00103                                         if randint(0, nr_class-j-1) < k:
00104                                                 labels[begin+j].selected = 1
00105                                                 k = k - 1
00106                                 begin = i
00107                                 label = new_label
00108         elif method == 1: # random
00109                 k = n
00110                 for i in range(l):
00111                         if randint(0,l-i-1) < k:
00112                                 labels[i].selected = 1
00113                                 k = k - 1
00114                         i = i + 1
00115 
00116         # output
00117         i = 0
00118         if method == 0:
00119                 labels.sort(key = lambda x: int(x.index))
00120         
00121         f = open(dataset_filename, 'r')
00122         for line in f:
00123                 if labels[i].selected == 1:
00124                         file1.write(line)
00125                 else:
00126                         if split == 1:
00127                                 file2.write(line)
00128                 i = i + 1
00129 
00130         if warning > 0:
00131                 stderr.write("""\
00132 Warning:
00133 1. You may have regression data. Please use -s 1.
00134 2. Classification data unbalanced or too small. We select at least 1 per class.
00135    The subset thus contains {0} instances.
00136 """.format(n+warning))
00137 
00138         # cleanup
00139         f.close()
00140         
00141         file1.close()
00142         
00143         if split == 1:
00144                 file2.close()
00145 
00146 main()


haf_grasping
Author(s): David Fischinger
autogenerated on Wed Jan 11 2017 03:48:49