Go to the documentation of this file.00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030 #include <swri_geometry_util/geometry_util.h>
00031
00032 namespace swri_geometry_util
00033 {
00034 double DistanceFromPlane(
00035 const tf::Vector3& plane_normal,
00036 const tf::Vector3& plane_point,
00037 const tf::Vector3& point)
00038 {
00039 return plane_normal.normalized().dot(point - plane_point);
00040 }
00041
00042 tf::Vector3 ProjectPointToPlane(
00043 const tf::Vector3& plane_normal,
00044 const tf::Vector3& plane_point,
00045 const tf::Vector3& point)
00046 {
00047 double d = DistanceFromPlane(plane_normal, plane_point, point);
00048 return point - plane_normal * d;
00049 }
00050
00051 double DistanceFromLineSegment(
00052 const tf::Vector3& line_start,
00053 const tf::Vector3& line_end,
00054 const tf::Vector3& point)
00055 {
00056 return point.distance(ProjectToLineSegment(line_start, line_end, point));
00057 }
00058
00059 double DistanceFromLineSegment(
00060 const cv::Vec2d& line_start,
00061 const cv::Vec2d& line_end,
00062 const cv::Vec2d& point)
00063 {
00064 const cv::Vec2d proj = ProjectToLineSegment(line_start, line_end, point);
00065 return std::sqrt(
00066 (point[0] - proj[0]) * (point[0] - proj[0]) +
00067 (point[1] - proj[1]) * (point[1] - proj[1]));
00068 }
00069
00070 tf::Vector3 ProjectToLineSegment(
00071 const tf::Vector3& line_start,
00072 const tf::Vector3& line_end,
00073 const tf::Vector3& point)
00074 {
00075 tf::Vector3 v = line_end - line_start;
00076 tf::Vector3 r = point - line_start;
00077
00078 double t = r.dot(v);
00079 if (t <= 0)
00080 {
00081 return line_start;
00082 }
00083
00084 double b = v.dot(v);
00085 if (t >= b)
00086 {
00087 return line_end;
00088 }
00089
00090 return line_start + (t / b) * v;
00091 }
00092
00093
00094 cv::Vec2d ProjectToLineSegment(
00095 const cv::Vec2d& line_start,
00096 const cv::Vec2d& line_end,
00097 const cv::Vec2d& point)
00098 {
00099 cv::Point2d v(line_end - line_start);
00100 cv::Point2d r(point - line_start);
00101
00102 double t = r.dot(v);
00103 if (t <= 0)
00104 {
00105 return line_start;
00106 }
00107
00108 double b = v.dot(v);
00109 if (t >= b)
00110 {
00111 return line_end;
00112 }
00113
00114
00115
00116 return line_start + cv::Vec2d(v.x * (t / b), v.y * (t / b));
00117 }
00118
00119 bool PointInPolygon(
00120 const std::vector<cv::Vec2d>& polygon,
00121 const cv::Vec2d& point)
00122 {
00123 if (polygon.size() < 2)
00124 {
00125 return false;
00126 }
00127
00128 bool is_inside = false;
00129 if (((polygon.front()[1] > point[1]) != (polygon.back()[1] > point[1])) &&
00130 (point[0] < (polygon.back()[0] - polygon.front()[0]) * (point[1] - polygon.front()[1]) /
00131 (polygon.back()[1] - polygon.front()[1]) + polygon.front()[0]))
00132 {
00133 is_inside = !is_inside;
00134 }
00135
00136 for (size_t i = 1; i < polygon.size(); i++)
00137 {
00138 if (((polygon[i][1] > point[1]) != (polygon[i - 1][1] > point[1])) &&
00139 (point[0] < (polygon[i - 1][0] - polygon[i][0]) * (point[1] - polygon[i][1]) /
00140 (polygon[i - 1][1] - polygon[i][1]) + polygon[i][0]))
00141 {
00142 is_inside = !is_inside;
00143 }
00144 }
00145
00146 return is_inside;
00147 }
00148
00149 double DistanceFromPolygon(
00150 const std::vector<cv::Vec2d>& polygon,
00151 const cv::Vec2d& point)
00152 {
00153 if (polygon.empty())
00154 {
00155 return -1;
00156 }
00157
00158 double dist = DistanceFromLineSegment(polygon.front(), polygon.back(), point);
00159 for (size_t i = 1; i < polygon.size(); i++)
00160 {
00161 dist = std::min(dist, DistanceFromLineSegment(polygon[i], polygon[i - 1], point));
00162 }
00163
00164 return dist;
00165 }
00166
00167 bool ClosestPointToLines(
00168 const tf::Vector3& a1,
00169 const tf::Vector3& a2,
00170 const tf::Vector3& b1,
00171 const tf::Vector3& b2,
00172 tf::Vector3& point)
00173 {
00174 tf::Vector3 u = a1 - a2;
00175 tf::Vector3 v = b1 - b2;
00176 if (u.length() == 0 || v.length() == 0)
00177 {
00178 return false;
00179 }
00180 tf::Vector3 w = u.cross(v);
00181 tf::Vector3 s = b1 - a1;
00182 if (s.length() == 0)
00183 {
00184 point = a1;
00185 return true;
00186 }
00187 double f = w.dot(w);
00188 if (f == 0)
00189 {
00190 return false;
00191 }
00192 tf::Vector3 x = a1 + u * (s.cross(v).dot(w) / f);
00193 tf::Vector3 y = b1 + v * (s.cross(u).dot(w) / f);
00194 point = (x + y) / 2;
00195 return true;
00196 }
00197 }