00001 /* zunmr3.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Subroutine */ int zunmr3_(char *side, char *trans, integer *m, integer *n, 00017 integer *k, integer *l, doublecomplex *a, integer *lda, doublecomplex 00018 *tau, doublecomplex *c__, integer *ldc, doublecomplex *work, integer * 00019 info) 00020 { 00021 /* System generated locals */ 00022 integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3; 00023 doublecomplex z__1; 00024 00025 /* Builtin functions */ 00026 void d_cnjg(doublecomplex *, doublecomplex *); 00027 00028 /* Local variables */ 00029 integer i__, i1, i2, i3, ja, ic, jc, mi, ni, nq; 00030 logical left; 00031 doublecomplex taui; 00032 extern logical lsame_(char *, char *); 00033 extern /* Subroutine */ int zlarz_(char *, integer *, integer *, integer * 00034 , doublecomplex *, integer *, doublecomplex *, doublecomplex *, 00035 integer *, doublecomplex *), xerbla_(char *, integer *); 00036 logical notran; 00037 00038 00039 /* -- LAPACK routine (version 3.2) -- */ 00040 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00041 /* November 2006 */ 00042 00043 /* .. Scalar Arguments .. */ 00044 /* .. */ 00045 /* .. Array Arguments .. */ 00046 /* .. */ 00047 00048 /* Purpose */ 00049 /* ======= */ 00050 00051 /* ZUNMR3 overwrites the general complex m by n matrix C with */ 00052 00053 /* Q * C if SIDE = 'L' and TRANS = 'N', or */ 00054 00055 /* Q'* C if SIDE = 'L' and TRANS = 'C', or */ 00056 00057 /* C * Q if SIDE = 'R' and TRANS = 'N', or */ 00058 00059 /* C * Q' if SIDE = 'R' and TRANS = 'C', */ 00060 00061 /* where Q is a complex unitary matrix defined as the product of k */ 00062 /* elementary reflectors */ 00063 00064 /* Q = H(1) H(2) . . . H(k) */ 00065 00066 /* as returned by ZTZRZF. Q is of order m if SIDE = 'L' and of order n */ 00067 /* if SIDE = 'R'. */ 00068 00069 /* Arguments */ 00070 /* ========= */ 00071 00072 /* SIDE (input) CHARACTER*1 */ 00073 /* = 'L': apply Q or Q' from the Left */ 00074 /* = 'R': apply Q or Q' from the Right */ 00075 00076 /* TRANS (input) CHARACTER*1 */ 00077 /* = 'N': apply Q (No transpose) */ 00078 /* = 'C': apply Q' (Conjugate transpose) */ 00079 00080 /* M (input) INTEGER */ 00081 /* The number of rows of the matrix C. M >= 0. */ 00082 00083 /* N (input) INTEGER */ 00084 /* The number of columns of the matrix C. N >= 0. */ 00085 00086 /* K (input) INTEGER */ 00087 /* The number of elementary reflectors whose product defines */ 00088 /* the matrix Q. */ 00089 /* If SIDE = 'L', M >= K >= 0; */ 00090 /* if SIDE = 'R', N >= K >= 0. */ 00091 00092 /* L (input) INTEGER */ 00093 /* The number of columns of the matrix A containing */ 00094 /* the meaningful part of the Householder reflectors. */ 00095 /* If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0. */ 00096 00097 /* A (input) COMPLEX*16 array, dimension */ 00098 /* (LDA,M) if SIDE = 'L', */ 00099 /* (LDA,N) if SIDE = 'R' */ 00100 /* The i-th row must contain the vector which defines the */ 00101 /* elementary reflector H(i), for i = 1,2,...,k, as returned by */ 00102 /* ZTZRZF in the last k rows of its array argument A. */ 00103 /* A is modified by the routine but restored on exit. */ 00104 00105 /* LDA (input) INTEGER */ 00106 /* The leading dimension of the array A. LDA >= max(1,K). */ 00107 00108 /* TAU (input) COMPLEX*16 array, dimension (K) */ 00109 /* TAU(i) must contain the scalar factor of the elementary */ 00110 /* reflector H(i), as returned by ZTZRZF. */ 00111 00112 /* C (input/output) COMPLEX*16 array, dimension (LDC,N) */ 00113 /* On entry, the m-by-n matrix C. */ 00114 /* On exit, C is overwritten by Q*C or Q'*C or C*Q' or C*Q. */ 00115 00116 /* LDC (input) INTEGER */ 00117 /* The leading dimension of the array C. LDC >= max(1,M). */ 00118 00119 /* WORK (workspace) COMPLEX*16 array, dimension */ 00120 /* (N) if SIDE = 'L', */ 00121 /* (M) if SIDE = 'R' */ 00122 00123 /* INFO (output) INTEGER */ 00124 /* = 0: successful exit */ 00125 /* < 0: if INFO = -i, the i-th argument had an illegal value */ 00126 00127 /* Further Details */ 00128 /* =============== */ 00129 00130 /* Based on contributions by */ 00131 /* A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA */ 00132 00133 /* ===================================================================== */ 00134 00135 /* .. Local Scalars .. */ 00136 /* .. */ 00137 /* .. External Functions .. */ 00138 /* .. */ 00139 /* .. External Subroutines .. */ 00140 /* .. */ 00141 /* .. Intrinsic Functions .. */ 00142 /* .. */ 00143 /* .. Executable Statements .. */ 00144 00145 /* Test the input arguments */ 00146 00147 /* Parameter adjustments */ 00148 a_dim1 = *lda; 00149 a_offset = 1 + a_dim1; 00150 a -= a_offset; 00151 --tau; 00152 c_dim1 = *ldc; 00153 c_offset = 1 + c_dim1; 00154 c__ -= c_offset; 00155 --work; 00156 00157 /* Function Body */ 00158 *info = 0; 00159 left = lsame_(side, "L"); 00160 notran = lsame_(trans, "N"); 00161 00162 /* NQ is the order of Q */ 00163 00164 if (left) { 00165 nq = *m; 00166 } else { 00167 nq = *n; 00168 } 00169 if (! left && ! lsame_(side, "R")) { 00170 *info = -1; 00171 } else if (! notran && ! lsame_(trans, "C")) { 00172 *info = -2; 00173 } else if (*m < 0) { 00174 *info = -3; 00175 } else if (*n < 0) { 00176 *info = -4; 00177 } else if (*k < 0 || *k > nq) { 00178 *info = -5; 00179 } else if (*l < 0 || left && *l > *m || ! left && *l > *n) { 00180 *info = -6; 00181 } else if (*lda < max(1,*k)) { 00182 *info = -8; 00183 } else if (*ldc < max(1,*m)) { 00184 *info = -11; 00185 } 00186 if (*info != 0) { 00187 i__1 = -(*info); 00188 xerbla_("ZUNMR3", &i__1); 00189 return 0; 00190 } 00191 00192 /* Quick return if possible */ 00193 00194 if (*m == 0 || *n == 0 || *k == 0) { 00195 return 0; 00196 } 00197 00198 if (left && ! notran || ! left && notran) { 00199 i1 = 1; 00200 i2 = *k; 00201 i3 = 1; 00202 } else { 00203 i1 = *k; 00204 i2 = 1; 00205 i3 = -1; 00206 } 00207 00208 if (left) { 00209 ni = *n; 00210 ja = *m - *l + 1; 00211 jc = 1; 00212 } else { 00213 mi = *m; 00214 ja = *n - *l + 1; 00215 ic = 1; 00216 } 00217 00218 i__1 = i2; 00219 i__2 = i3; 00220 for (i__ = i1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) { 00221 if (left) { 00222 00223 /* H(i) or H(i)' is applied to C(i:m,1:n) */ 00224 00225 mi = *m - i__ + 1; 00226 ic = i__; 00227 } else { 00228 00229 /* H(i) or H(i)' is applied to C(1:m,i:n) */ 00230 00231 ni = *n - i__ + 1; 00232 jc = i__; 00233 } 00234 00235 /* Apply H(i) or H(i)' */ 00236 00237 if (notran) { 00238 i__3 = i__; 00239 taui.r = tau[i__3].r, taui.i = tau[i__3].i; 00240 } else { 00241 d_cnjg(&z__1, &tau[i__]); 00242 taui.r = z__1.r, taui.i = z__1.i; 00243 } 00244 zlarz_(side, &mi, &ni, l, &a[i__ + ja * a_dim1], lda, &taui, &c__[ic 00245 + jc * c_dim1], ldc, &work[1]); 00246 00247 /* L10: */ 00248 } 00249 00250 return 0; 00251 00252 /* End of ZUNMR3 */ 00253 00254 } /* zunmr3_ */