00001 /* ztrtrs.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static doublecomplex c_b2 = {1.,0.}; 00019 00020 /* Subroutine */ int ztrtrs_(char *uplo, char *trans, char *diag, integer *n, 00021 integer *nrhs, doublecomplex *a, integer *lda, doublecomplex *b, 00022 integer *ldb, integer *info) 00023 { 00024 /* System generated locals */ 00025 integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2; 00026 00027 /* Local variables */ 00028 extern logical lsame_(char *, char *); 00029 extern /* Subroutine */ int ztrsm_(char *, char *, char *, char *, 00030 integer *, integer *, doublecomplex *, doublecomplex *, integer *, 00031 doublecomplex *, integer *), 00032 xerbla_(char *, integer *); 00033 logical nounit; 00034 00035 00036 /* -- LAPACK routine (version 3.2) -- */ 00037 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00038 /* November 2006 */ 00039 00040 /* .. Scalar Arguments .. */ 00041 /* .. */ 00042 /* .. Array Arguments .. */ 00043 /* .. */ 00044 00045 /* Purpose */ 00046 /* ======= */ 00047 00048 /* ZTRTRS solves a triangular system of the form */ 00049 00050 /* A * X = B, A**T * X = B, or A**H * X = B, */ 00051 00052 /* where A is a triangular matrix of order N, and B is an N-by-NRHS */ 00053 /* matrix. A check is made to verify that A is nonsingular. */ 00054 00055 /* Arguments */ 00056 /* ========= */ 00057 00058 /* UPLO (input) CHARACTER*1 */ 00059 /* = 'U': A is upper triangular; */ 00060 /* = 'L': A is lower triangular. */ 00061 00062 /* TRANS (input) CHARACTER*1 */ 00063 /* Specifies the form of the system of equations: */ 00064 /* = 'N': A * X = B (No transpose) */ 00065 /* = 'T': A**T * X = B (Transpose) */ 00066 /* = 'C': A**H * X = B (Conjugate transpose) */ 00067 00068 /* DIAG (input) CHARACTER*1 */ 00069 /* = 'N': A is non-unit triangular; */ 00070 /* = 'U': A is unit triangular. */ 00071 00072 /* N (input) INTEGER */ 00073 /* The order of the matrix A. N >= 0. */ 00074 00075 /* NRHS (input) INTEGER */ 00076 /* The number of right hand sides, i.e., the number of columns */ 00077 /* of the matrix B. NRHS >= 0. */ 00078 00079 /* A (input) COMPLEX*16 array, dimension (LDA,N) */ 00080 /* The triangular matrix A. If UPLO = 'U', the leading N-by-N */ 00081 /* upper triangular part of the array A contains the upper */ 00082 /* triangular matrix, and the strictly lower triangular part of */ 00083 /* A is not referenced. If UPLO = 'L', the leading N-by-N lower */ 00084 /* triangular part of the array A contains the lower triangular */ 00085 /* matrix, and the strictly upper triangular part of A is not */ 00086 /* referenced. If DIAG = 'U', the diagonal elements of A are */ 00087 /* also not referenced and are assumed to be 1. */ 00088 00089 /* LDA (input) INTEGER */ 00090 /* The leading dimension of the array A. LDA >= max(1,N). */ 00091 00092 /* B (input/output) COMPLEX*16 array, dimension (LDB,NRHS) */ 00093 /* On entry, the right hand side matrix B. */ 00094 /* On exit, if INFO = 0, the solution matrix X. */ 00095 00096 /* LDB (input) INTEGER */ 00097 /* The leading dimension of the array B. LDB >= max(1,N). */ 00098 00099 /* INFO (output) INTEGER */ 00100 /* = 0: successful exit */ 00101 /* < 0: if INFO = -i, the i-th argument had an illegal value */ 00102 /* > 0: if INFO = i, the i-th diagonal element of A is zero, */ 00103 /* indicating that the matrix is singular and the solutions */ 00104 /* X have not been computed. */ 00105 00106 /* ===================================================================== */ 00107 00108 /* .. Parameters .. */ 00109 /* .. */ 00110 /* .. Local Scalars .. */ 00111 /* .. */ 00112 /* .. External Functions .. */ 00113 /* .. */ 00114 /* .. External Subroutines .. */ 00115 /* .. */ 00116 /* .. Intrinsic Functions .. */ 00117 /* .. */ 00118 /* .. Executable Statements .. */ 00119 00120 /* Test the input parameters. */ 00121 00122 /* Parameter adjustments */ 00123 a_dim1 = *lda; 00124 a_offset = 1 + a_dim1; 00125 a -= a_offset; 00126 b_dim1 = *ldb; 00127 b_offset = 1 + b_dim1; 00128 b -= b_offset; 00129 00130 /* Function Body */ 00131 *info = 0; 00132 nounit = lsame_(diag, "N"); 00133 if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) { 00134 *info = -1; 00135 } else if (! lsame_(trans, "N") && ! lsame_(trans, 00136 "T") && ! lsame_(trans, "C")) { 00137 *info = -2; 00138 } else if (! nounit && ! lsame_(diag, "U")) { 00139 *info = -3; 00140 } else if (*n < 0) { 00141 *info = -4; 00142 } else if (*nrhs < 0) { 00143 *info = -5; 00144 } else if (*lda < max(1,*n)) { 00145 *info = -7; 00146 } else if (*ldb < max(1,*n)) { 00147 *info = -9; 00148 } 00149 if (*info != 0) { 00150 i__1 = -(*info); 00151 xerbla_("ZTRTRS", &i__1); 00152 return 0; 00153 } 00154 00155 /* Quick return if possible */ 00156 00157 if (*n == 0) { 00158 return 0; 00159 } 00160 00161 /* Check for singularity. */ 00162 00163 if (nounit) { 00164 i__1 = *n; 00165 for (*info = 1; *info <= i__1; ++(*info)) { 00166 i__2 = *info + *info * a_dim1; 00167 if (a[i__2].r == 0. && a[i__2].i == 0.) { 00168 return 0; 00169 } 00170 /* L10: */ 00171 } 00172 } 00173 *info = 0; 00174 00175 /* Solve A * x = b, A**T * x = b, or A**H * x = b. */ 00176 00177 ztrsm_("Left", uplo, trans, diag, n, nrhs, &c_b2, &a[a_offset], lda, &b[ 00178 b_offset], ldb); 00179 00180 return 0; 00181 00182 /* End of ZTRTRS */ 00183 00184 } /* ztrtrs_ */