00001 /* ztrt02.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static integer c__1 = 1; 00019 static doublecomplex c_b12 = {-1.,0.}; 00020 00021 /* Subroutine */ int ztrt02_(char *uplo, char *trans, char *diag, integer *n, 00022 integer *nrhs, doublecomplex *a, integer *lda, doublecomplex *x, 00023 integer *ldx, doublecomplex *b, integer *ldb, doublecomplex *work, 00024 doublereal *rwork, doublereal *resid) 00025 { 00026 /* System generated locals */ 00027 integer a_dim1, a_offset, b_dim1, b_offset, x_dim1, x_offset, i__1; 00028 doublereal d__1, d__2; 00029 00030 /* Local variables */ 00031 integer j; 00032 doublereal eps; 00033 extern logical lsame_(char *, char *); 00034 doublereal anorm, bnorm, xnorm; 00035 extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *, 00036 doublecomplex *, integer *), zaxpy_(integer *, doublecomplex *, 00037 doublecomplex *, integer *, doublecomplex *, integer *), ztrmv_( 00038 char *, char *, char *, integer *, doublecomplex *, integer *, 00039 doublecomplex *, integer *); 00040 extern doublereal dlamch_(char *), dzasum_(integer *, 00041 doublecomplex *, integer *), zlantr_(char *, char *, char *, 00042 integer *, integer *, doublecomplex *, integer *, doublereal *); 00043 00044 00045 /* -- LAPACK test routine (version 3.1) -- */ 00046 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00047 /* November 2006 */ 00048 00049 /* .. Scalar Arguments .. */ 00050 /* .. */ 00051 /* .. Array Arguments .. */ 00052 /* .. */ 00053 00054 /* Purpose */ 00055 /* ======= */ 00056 00057 /* ZTRT02 computes the residual for the computed solution to a */ 00058 /* triangular system of linear equations A*x = b, A**T *x = b, */ 00059 /* or A**H *x = b. Here A is a triangular matrix, A**T is the transpose */ 00060 /* of A, A**H is the conjugate transpose of A, and x and b are N by NRHS */ 00061 /* matrices. The test ratio is the maximum over the number of right */ 00062 /* hand sides of */ 00063 /* norm(b - op(A)*x) / ( norm(op(A)) * norm(x) * EPS ), */ 00064 /* where op(A) denotes A, A**T, or A**H, and EPS is the machine epsilon. */ 00065 00066 /* Arguments */ 00067 /* ========= */ 00068 00069 /* UPLO (input) CHARACTER*1 */ 00070 /* Specifies whether the matrix A is upper or lower triangular. */ 00071 /* = 'U': Upper triangular */ 00072 /* = 'L': Lower triangular */ 00073 00074 /* TRANS (input) CHARACTER*1 */ 00075 /* Specifies the operation applied to A. */ 00076 /* = 'N': A *x = b (No transpose) */ 00077 /* = 'T': A**T *x = b (Transpose) */ 00078 /* = 'C': A**H *x = b (Conjugate transpose) */ 00079 00080 /* DIAG (input) CHARACTER*1 */ 00081 /* Specifies whether or not the matrix A is unit triangular. */ 00082 /* = 'N': Non-unit triangular */ 00083 /* = 'U': Unit triangular */ 00084 00085 /* N (input) INTEGER */ 00086 /* The order of the matrix A. N >= 0. */ 00087 00088 /* NRHS (input) INTEGER */ 00089 /* The number of right hand sides, i.e., the number of columns */ 00090 /* of the matrices X and B. NRHS >= 0. */ 00091 00092 /* A (input) COMPLEX*16 array, dimension (LDA,N) */ 00093 /* The triangular matrix A. If UPLO = 'U', the leading n by n */ 00094 /* upper triangular part of the array A contains the upper */ 00095 /* triangular matrix, and the strictly lower triangular part of */ 00096 /* A is not referenced. If UPLO = 'L', the leading n by n lower */ 00097 /* triangular part of the array A contains the lower triangular */ 00098 /* matrix, and the strictly upper triangular part of A is not */ 00099 /* referenced. If DIAG = 'U', the diagonal elements of A are */ 00100 /* also not referenced and are assumed to be 1. */ 00101 00102 /* LDA (input) INTEGER */ 00103 /* The leading dimension of the array A. LDA >= max(1,N). */ 00104 00105 /* X (input) COMPLEX*16 array, dimension (LDX,NRHS) */ 00106 /* The computed solution vectors for the system of linear */ 00107 /* equations. */ 00108 00109 /* LDX (input) INTEGER */ 00110 /* The leading dimension of the array X. LDX >= max(1,N). */ 00111 00112 /* B (input) COMPLEX*16 array, dimension (LDB,NRHS) */ 00113 /* The right hand side vectors for the system of linear */ 00114 /* equations. */ 00115 00116 /* LDB (input) INTEGER */ 00117 /* The leading dimension of the array B. LDB >= max(1,N). */ 00118 00119 /* WORK (workspace) COMPLEX*16 array, dimension (N) */ 00120 00121 /* RWORK (workspace) DOUBLE PRECISION array, dimension (N) */ 00122 00123 /* RESID (output) DOUBLE PRECISION */ 00124 /* The maximum over the number of right hand sides of */ 00125 /* norm(op(A)*x - b) / ( norm(op(A)) * norm(x) * EPS ). */ 00126 00127 /* ===================================================================== */ 00128 00129 /* .. Parameters .. */ 00130 /* .. */ 00131 /* .. Local Scalars .. */ 00132 /* .. */ 00133 /* .. External Functions .. */ 00134 /* .. */ 00135 /* .. External Subroutines .. */ 00136 /* .. */ 00137 /* .. Intrinsic Functions .. */ 00138 /* .. */ 00139 /* .. Executable Statements .. */ 00140 00141 /* Quick exit if N = 0 or NRHS = 0 */ 00142 00143 /* Parameter adjustments */ 00144 a_dim1 = *lda; 00145 a_offset = 1 + a_dim1; 00146 a -= a_offset; 00147 x_dim1 = *ldx; 00148 x_offset = 1 + x_dim1; 00149 x -= x_offset; 00150 b_dim1 = *ldb; 00151 b_offset = 1 + b_dim1; 00152 b -= b_offset; 00153 --work; 00154 --rwork; 00155 00156 /* Function Body */ 00157 if (*n <= 0 || *nrhs <= 0) { 00158 *resid = 0.; 00159 return 0; 00160 } 00161 00162 /* Compute the 1-norm of A or A**H. */ 00163 00164 if (lsame_(trans, "N")) { 00165 anorm = zlantr_("1", uplo, diag, n, n, &a[a_offset], lda, &rwork[1]); 00166 } else { 00167 anorm = zlantr_("I", uplo, diag, n, n, &a[a_offset], lda, &rwork[1]); 00168 } 00169 00170 /* Exit with RESID = 1/EPS if ANORM = 0. */ 00171 00172 eps = dlamch_("Epsilon"); 00173 if (anorm <= 0.) { 00174 *resid = 1. / eps; 00175 return 0; 00176 } 00177 00178 /* Compute the maximum over the number of right hand sides of */ 00179 /* norm(op(A)*x - b) / ( norm(op(A)) * norm(x) * EPS ) */ 00180 00181 *resid = 0.; 00182 i__1 = *nrhs; 00183 for (j = 1; j <= i__1; ++j) { 00184 zcopy_(n, &x[j * x_dim1 + 1], &c__1, &work[1], &c__1); 00185 ztrmv_(uplo, trans, diag, n, &a[a_offset], lda, &work[1], &c__1); 00186 zaxpy_(n, &c_b12, &b[j * b_dim1 + 1], &c__1, &work[1], &c__1); 00187 bnorm = dzasum_(n, &work[1], &c__1); 00188 xnorm = dzasum_(n, &x[j * x_dim1 + 1], &c__1); 00189 if (xnorm <= 0.) { 00190 *resid = 1. / eps; 00191 } else { 00192 /* Computing MAX */ 00193 d__1 = *resid, d__2 = bnorm / anorm / xnorm / eps; 00194 *resid = max(d__1,d__2); 00195 } 00196 /* L10: */ 00197 } 00198 00199 return 0; 00200 00201 /* End of ZTRT02 */ 00202 00203 } /* ztrt02_ */