00001 /* ztrt01.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static integer c__1 = 1; 00019 00020 /* Subroutine */ int ztrt01_(char *uplo, char *diag, integer *n, 00021 doublecomplex *a, integer *lda, doublecomplex *ainv, integer *ldainv, 00022 doublereal *rcond, doublereal *rwork, doublereal *resid) 00023 { 00024 /* System generated locals */ 00025 integer a_dim1, a_offset, ainv_dim1, ainv_offset, i__1, i__2, i__3; 00026 doublecomplex z__1; 00027 00028 /* Local variables */ 00029 integer j; 00030 doublereal eps; 00031 extern logical lsame_(char *, char *); 00032 doublereal anorm; 00033 extern /* Subroutine */ int ztrmv_(char *, char *, char *, integer *, 00034 doublecomplex *, integer *, doublecomplex *, integer *); 00035 extern doublereal dlamch_(char *); 00036 doublereal ainvnm; 00037 extern doublereal zlantr_(char *, char *, char *, integer *, integer *, 00038 doublecomplex *, integer *, doublereal *); 00039 00040 00041 /* -- LAPACK test routine (version 3.1) -- */ 00042 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00043 /* November 2006 */ 00044 00045 /* .. Scalar Arguments .. */ 00046 /* .. */ 00047 /* .. Array Arguments .. */ 00048 /* .. */ 00049 00050 /* Purpose */ 00051 /* ======= */ 00052 00053 /* ZTRT01 computes the residual for a triangular matrix A times its */ 00054 /* inverse: */ 00055 /* RESID = norm( A*AINV - I ) / ( N * norm(A) * norm(AINV) * EPS ), */ 00056 /* where EPS is the machine epsilon. */ 00057 00058 /* Arguments */ 00059 /* ========== */ 00060 00061 /* UPLO (input) CHARACTER*1 */ 00062 /* Specifies whether the matrix A is upper or lower triangular. */ 00063 /* = 'U': Upper triangular */ 00064 /* = 'L': Lower triangular */ 00065 00066 /* DIAG (input) CHARACTER*1 */ 00067 /* Specifies whether or not the matrix A is unit triangular. */ 00068 /* = 'N': Non-unit triangular */ 00069 /* = 'U': Unit triangular */ 00070 00071 /* N (input) INTEGER */ 00072 /* The order of the matrix A. N >= 0. */ 00073 00074 /* A (input) COMPLEX*16 array, dimension (LDA,N) */ 00075 /* The triangular matrix A. If UPLO = 'U', the leading n by n */ 00076 /* upper triangular part of the array A contains the upper */ 00077 /* triangular matrix, and the strictly lower triangular part of */ 00078 /* A is not referenced. If UPLO = 'L', the leading n by n lower */ 00079 /* triangular part of the array A contains the lower triangular */ 00080 /* matrix, and the strictly upper triangular part of A is not */ 00081 /* referenced. If DIAG = 'U', the diagonal elements of A are */ 00082 /* also not referenced and are assumed to be 1. */ 00083 00084 /* LDA (input) INTEGER */ 00085 /* The leading dimension of the array A. LDA >= max(1,N). */ 00086 00087 /* AINV (input) COMPLEX*16 array, dimension (LDAINV,N) */ 00088 /* On entry, the (triangular) inverse of the matrix A, in the */ 00089 /* same storage format as A. */ 00090 /* On exit, the contents of AINV are destroyed. */ 00091 00092 /* LDAINV (input) INTEGER */ 00093 /* The leading dimension of the array AINV. LDAINV >= max(1,N). */ 00094 00095 /* RCOND (output) DOUBLE PRECISION */ 00096 /* The reciprocal condition number of A, computed as */ 00097 /* 1/(norm(A) * norm(AINV)). */ 00098 00099 /* RWORK (workspace) DOUBLE PRECISION array, dimension (N) */ 00100 00101 /* RESID (output) DOUBLE PRECISION */ 00102 /* norm(A*AINV - I) / ( N * norm(A) * norm(AINV) * EPS ) */ 00103 00104 /* ===================================================================== */ 00105 00106 /* .. Parameters .. */ 00107 /* .. */ 00108 /* .. Local Scalars .. */ 00109 /* .. */ 00110 /* .. External Functions .. */ 00111 /* .. */ 00112 /* .. External Subroutines .. */ 00113 /* .. */ 00114 /* .. Intrinsic Functions .. */ 00115 /* .. */ 00116 /* .. Executable Statements .. */ 00117 00118 /* Quick exit if N = 0 */ 00119 00120 /* Parameter adjustments */ 00121 a_dim1 = *lda; 00122 a_offset = 1 + a_dim1; 00123 a -= a_offset; 00124 ainv_dim1 = *ldainv; 00125 ainv_offset = 1 + ainv_dim1; 00126 ainv -= ainv_offset; 00127 --rwork; 00128 00129 /* Function Body */ 00130 if (*n <= 0) { 00131 *rcond = 1.; 00132 *resid = 0.; 00133 return 0; 00134 } 00135 00136 /* Exit with RESID = 1/EPS if ANORM = 0 or AINVNM = 0. */ 00137 00138 eps = dlamch_("Epsilon"); 00139 anorm = zlantr_("1", uplo, diag, n, n, &a[a_offset], lda, &rwork[1]); 00140 ainvnm = zlantr_("1", uplo, diag, n, n, &ainv[ainv_offset], ldainv, & 00141 rwork[1]); 00142 if (anorm <= 0. || ainvnm <= 0.) { 00143 *rcond = 0.; 00144 *resid = 1. / eps; 00145 return 0; 00146 } 00147 *rcond = 1. / anorm / ainvnm; 00148 00149 /* Set the diagonal of AINV to 1 if AINV has unit diagonal. */ 00150 00151 if (lsame_(diag, "U")) { 00152 i__1 = *n; 00153 for (j = 1; j <= i__1; ++j) { 00154 i__2 = j + j * ainv_dim1; 00155 ainv[i__2].r = 1., ainv[i__2].i = 0.; 00156 /* L10: */ 00157 } 00158 } 00159 00160 /* Compute A * AINV, overwriting AINV. */ 00161 00162 if (lsame_(uplo, "U")) { 00163 i__1 = *n; 00164 for (j = 1; j <= i__1; ++j) { 00165 ztrmv_("Upper", "No transpose", diag, &j, &a[a_offset], lda, & 00166 ainv[j * ainv_dim1 + 1], &c__1); 00167 /* L20: */ 00168 } 00169 } else { 00170 i__1 = *n; 00171 for (j = 1; j <= i__1; ++j) { 00172 i__2 = *n - j + 1; 00173 ztrmv_("Lower", "No transpose", diag, &i__2, &a[j + j * a_dim1], 00174 lda, &ainv[j + j * ainv_dim1], &c__1); 00175 /* L30: */ 00176 } 00177 } 00178 00179 /* Subtract 1 from each diagonal element to form A*AINV - I. */ 00180 00181 i__1 = *n; 00182 for (j = 1; j <= i__1; ++j) { 00183 i__2 = j + j * ainv_dim1; 00184 i__3 = j + j * ainv_dim1; 00185 z__1.r = ainv[i__3].r - 1., z__1.i = ainv[i__3].i; 00186 ainv[i__2].r = z__1.r, ainv[i__2].i = z__1.i; 00187 /* L40: */ 00188 } 00189 00190 /* Compute norm(A*AINV - I) / (N * norm(A) * norm(AINV) * EPS) */ 00191 00192 *resid = zlantr_("1", uplo, "Non-unit", n, n, &ainv[ainv_offset], ldainv, 00193 &rwork[1]); 00194 00195 *resid = *resid * *rcond / (doublereal) (*n) / eps; 00196 00197 return 0; 00198 00199 /* End of ZTRT01 */ 00200 00201 } /* ztrt01_ */