00001 /* ztpt02.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static integer c__1 = 1; 00019 static doublecomplex c_b12 = {-1.,0.}; 00020 00021 /* Subroutine */ int ztpt02_(char *uplo, char *trans, char *diag, integer *n, 00022 integer *nrhs, doublecomplex *ap, doublecomplex *x, integer *ldx, 00023 doublecomplex *b, integer *ldb, doublecomplex *work, doublereal * 00024 rwork, doublereal *resid) 00025 { 00026 /* System generated locals */ 00027 integer b_dim1, b_offset, x_dim1, x_offset, i__1; 00028 doublereal d__1, d__2; 00029 00030 /* Local variables */ 00031 integer j; 00032 doublereal eps; 00033 extern logical lsame_(char *, char *); 00034 doublereal anorm, bnorm, xnorm; 00035 extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *, 00036 doublecomplex *, integer *), zaxpy_(integer *, doublecomplex *, 00037 doublecomplex *, integer *, doublecomplex *, integer *), ztpmv_( 00038 char *, char *, char *, integer *, doublecomplex *, doublecomplex 00039 *, integer *); 00040 extern doublereal dlamch_(char *), dzasum_(integer *, 00041 doublecomplex *, integer *), zlantp_(char *, char *, char *, 00042 integer *, doublecomplex *, doublereal *); 00043 00044 00045 /* -- LAPACK test routine (version 3.1) -- */ 00046 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00047 /* November 2006 */ 00048 00049 /* .. Scalar Arguments .. */ 00050 /* .. */ 00051 /* .. Array Arguments .. */ 00052 /* .. */ 00053 00054 /* Purpose */ 00055 /* ======= */ 00056 00057 /* ZTPT02 computes the residual for the computed solution to a */ 00058 /* triangular system of linear equations A*x = b, A**T *x = b, or */ 00059 /* A**H *x = b, when the triangular matrix A is stored in packed format. */ 00060 /* Here A**T denotes the transpose of A, A**H denotes the conjugate */ 00061 /* transpose of A, and x and b are N by NRHS matrices. The test ratio */ 00062 /* is the maximum over the number of right hand sides of */ 00063 /* the maximum over the number of right hand sides of */ 00064 /* norm(b - op(A)*x) / ( norm(op(A)) * norm(x) * EPS ), */ 00065 /* where op(A) denotes A, A**T, or A**H, and EPS is the machine epsilon. */ 00066 00067 /* Arguments */ 00068 /* ========= */ 00069 00070 /* UPLO (input) CHARACTER*1 */ 00071 /* Specifies whether the matrix A is upper or lower triangular. */ 00072 /* = 'U': Upper triangular */ 00073 /* = 'L': Lower triangular */ 00074 00075 /* TRANS (input) CHARACTER*1 */ 00076 /* Specifies the operation applied to A. */ 00077 /* = 'N': A *x = b (No transpose) */ 00078 /* = 'T': A**T *x = b (Transpose) */ 00079 /* = 'C': A**H *x = b (Conjugate transpose) */ 00080 00081 /* DIAG (input) CHARACTER*1 */ 00082 /* Specifies whether or not the matrix A is unit triangular. */ 00083 /* = 'N': Non-unit triangular */ 00084 /* = 'U': Unit triangular */ 00085 00086 /* N (input) INTEGER */ 00087 /* The order of the matrix A. N >= 0. */ 00088 00089 /* NRHS (input) INTEGER */ 00090 /* The number of right hand sides, i.e., the number of columns */ 00091 /* of the matrices X and B. NRHS >= 0. */ 00092 00093 /* AP (input) COMPLEX*16 array, dimension (N*(N+1)/2) */ 00094 /* The upper or lower triangular matrix A, packed columnwise in */ 00095 /* a linear array. The j-th column of A is stored in the array */ 00096 /* AP as follows: */ 00097 /* if UPLO = 'U', AP((j-1)*j/2 + i) = A(i,j) for 1<=i<=j; */ 00098 /* if UPLO = 'L', */ 00099 /* AP((j-1)*(n-j) + j*(j+1)/2 + i-j) = A(i,j) for j<=i<=n. */ 00100 00101 /* X (input) COMPLEX*16 array, dimension (LDX,NRHS) */ 00102 /* The computed solution vectors for the system of linear */ 00103 /* equations. */ 00104 00105 /* LDX (input) INTEGER */ 00106 /* The leading dimension of the array X. LDX >= max(1,N). */ 00107 00108 /* B (input) COMPLEX*16 array, dimension (LDB,NRHS) */ 00109 /* The right hand side vectors for the system of linear */ 00110 /* equations. */ 00111 00112 /* LDB (input) INTEGER */ 00113 /* The leading dimension of the array B. LDB >= max(1,N). */ 00114 00115 /* WORK (workspace) COMPLEX*16 array, dimension (N) */ 00116 00117 /* RWORK (workspace) DOUBLE PRECISION array, dimension (N) */ 00118 00119 /* RESID (output) DOUBLE PRECISION */ 00120 /* The maximum over the number of right hand sides of */ 00121 /* norm(op(A)*x - b) / ( norm(op(A)) * norm(x) * EPS ). */ 00122 00123 /* ===================================================================== */ 00124 00125 /* .. Parameters .. */ 00126 /* .. */ 00127 /* .. Local Scalars .. */ 00128 /* .. */ 00129 /* .. External Functions .. */ 00130 /* .. */ 00131 /* .. External Subroutines .. */ 00132 /* .. */ 00133 /* .. Intrinsic Functions .. */ 00134 /* .. */ 00135 /* .. Executable Statements .. */ 00136 00137 /* Quick exit if N = 0 or NRHS = 0 */ 00138 00139 /* Parameter adjustments */ 00140 --ap; 00141 x_dim1 = *ldx; 00142 x_offset = 1 + x_dim1; 00143 x -= x_offset; 00144 b_dim1 = *ldb; 00145 b_offset = 1 + b_dim1; 00146 b -= b_offset; 00147 --work; 00148 --rwork; 00149 00150 /* Function Body */ 00151 if (*n <= 0 || *nrhs <= 0) { 00152 *resid = 0.; 00153 return 0; 00154 } 00155 00156 /* Compute the 1-norm of A or A**H. */ 00157 00158 if (lsame_(trans, "N")) { 00159 anorm = zlantp_("1", uplo, diag, n, &ap[1], &rwork[1]); 00160 } else { 00161 anorm = zlantp_("I", uplo, diag, n, &ap[1], &rwork[1]); 00162 } 00163 00164 /* Exit with RESID = 1/EPS if ANORM = 0. */ 00165 00166 eps = dlamch_("Epsilon"); 00167 if (anorm <= 0.) { 00168 *resid = 1. / eps; 00169 return 0; 00170 } 00171 00172 /* Compute the maximum over the number of right hand sides of */ 00173 /* norm(op(A)*x - b) / ( norm(op(A)) * norm(x) * EPS ). */ 00174 00175 *resid = 0.; 00176 i__1 = *nrhs; 00177 for (j = 1; j <= i__1; ++j) { 00178 zcopy_(n, &x[j * x_dim1 + 1], &c__1, &work[1], &c__1); 00179 ztpmv_(uplo, trans, diag, n, &ap[1], &work[1], &c__1); 00180 zaxpy_(n, &c_b12, &b[j * b_dim1 + 1], &c__1, &work[1], &c__1); 00181 bnorm = dzasum_(n, &work[1], &c__1); 00182 xnorm = dzasum_(n, &x[j * x_dim1 + 1], &c__1); 00183 if (xnorm <= 0.) { 00184 *resid = 1. / eps; 00185 } else { 00186 /* Computing MAX */ 00187 d__1 = *resid, d__2 = bnorm / anorm / xnorm / eps; 00188 *resid = max(d__1,d__2); 00189 } 00190 /* L10: */ 00191 } 00192 00193 return 0; 00194 00195 /* End of ZTPT02 */ 00196 00197 } /* ztpt02_ */