zrqt01.c
Go to the documentation of this file.
00001 /* zrqt01.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Common Block Declarations */
00017 
00018 struct {
00019     char srnamt[32];
00020 } srnamc_;
00021 
00022 #define srnamc_1 srnamc_
00023 
00024 /* Table of constant values */
00025 
00026 static doublecomplex c_b1 = {-1e10,-1e10};
00027 static doublecomplex c_b12 = {0.,0.};
00028 static doublecomplex c_b19 = {-1.,0.};
00029 static doublecomplex c_b20 = {1.,0.};
00030 static doublereal c_b28 = -1.;
00031 static doublereal c_b29 = 1.;
00032 
00033 /* Subroutine */ int zrqt01_(integer *m, integer *n, doublecomplex *a, 
00034         doublecomplex *af, doublecomplex *q, doublecomplex *r__, integer *lda, 
00035          doublecomplex *tau, doublecomplex *work, integer *lwork, doublereal *
00036         rwork, doublereal *result)
00037 {
00038     /* System generated locals */
00039     integer a_dim1, a_offset, af_dim1, af_offset, q_dim1, q_offset, r_dim1, 
00040             r_offset, i__1, i__2;
00041 
00042     /* Builtin functions */
00043     /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
00044 
00045     /* Local variables */
00046     doublereal eps;
00047     integer info;
00048     doublereal resid, anorm;
00049     integer minmn;
00050     extern /* Subroutine */ int zgemm_(char *, char *, integer *, integer *, 
00051             integer *, doublecomplex *, doublecomplex *, integer *, 
00052             doublecomplex *, integer *, doublecomplex *, doublecomplex *, 
00053             integer *), zherk_(char *, char *, integer *, 
00054             integer *, doublereal *, doublecomplex *, integer *, doublereal *, 
00055              doublecomplex *, integer *);
00056     extern doublereal dlamch_(char *), zlange_(char *, integer *, 
00057             integer *, doublecomplex *, integer *, doublereal *);
00058     extern /* Subroutine */ int zgerqf_(integer *, integer *, doublecomplex *, 
00059              integer *, doublecomplex *, doublecomplex *, integer *, integer *
00060 ), zlacpy_(char *, integer *, integer *, doublecomplex *, integer 
00061             *, doublecomplex *, integer *), zlaset_(char *, integer *, 
00062              integer *, doublecomplex *, doublecomplex *, doublecomplex *, 
00063             integer *);
00064     extern doublereal zlansy_(char *, char *, integer *, doublecomplex *, 
00065             integer *, doublereal *);
00066     extern /* Subroutine */ int zungrq_(integer *, integer *, integer *, 
00067             doublecomplex *, integer *, doublecomplex *, doublecomplex *, 
00068             integer *, integer *);
00069 
00070 
00071 /*  -- LAPACK test routine (version 3.1) -- */
00072 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00073 /*     November 2006 */
00074 
00075 /*     .. Scalar Arguments .. */
00076 /*     .. */
00077 /*     .. Array Arguments .. */
00078 /*     .. */
00079 
00080 /*  Purpose */
00081 /*  ======= */
00082 
00083 /*  ZRQT01 tests ZGERQF, which computes the RQ factorization of an m-by-n */
00084 /*  matrix A, and partially tests ZUNGRQ which forms the n-by-n */
00085 /*  orthogonal matrix Q. */
00086 
00087 /*  ZRQT01 compares R with A*Q', and checks that Q is orthogonal. */
00088 
00089 /*  Arguments */
00090 /*  ========= */
00091 
00092 /*  M       (input) INTEGER */
00093 /*          The number of rows of the matrix A.  M >= 0. */
00094 
00095 /*  N       (input) INTEGER */
00096 /*          The number of columns of the matrix A.  N >= 0. */
00097 
00098 /*  A       (input) COMPLEX*16 array, dimension (LDA,N) */
00099 /*          The m-by-n matrix A. */
00100 
00101 /*  AF      (output) COMPLEX*16 array, dimension (LDA,N) */
00102 /*          Details of the RQ factorization of A, as returned by ZGERQF. */
00103 /*          See ZGERQF for further details. */
00104 
00105 /*  Q       (output) COMPLEX*16 array, dimension (LDA,N) */
00106 /*          The n-by-n orthogonal matrix Q. */
00107 
00108 /*  R       (workspace) COMPLEX*16 array, dimension (LDA,max(M,N)) */
00109 
00110 /*  LDA     (input) INTEGER */
00111 /*          The leading dimension of the arrays A, AF, Q and L. */
00112 /*          LDA >= max(M,N). */
00113 
00114 /*  TAU     (output) COMPLEX*16 array, dimension (min(M,N)) */
00115 /*          The scalar factors of the elementary reflectors, as returned */
00116 /*          by ZGERQF. */
00117 
00118 /*  WORK    (workspace) COMPLEX*16 array, dimension (LWORK) */
00119 
00120 /*  LWORK   (input) INTEGER */
00121 /*          The dimension of the array WORK. */
00122 
00123 /*  RWORK   (workspace) DOUBLE PRECISION array, dimension (max(M,N)) */
00124 
00125 /*  RESULT  (output) DOUBLE PRECISION array, dimension (2) */
00126 /*          The test ratios: */
00127 /*          RESULT(1) = norm( R - A*Q' ) / ( N * norm(A) * EPS ) */
00128 /*          RESULT(2) = norm( I - Q*Q' ) / ( N * EPS ) */
00129 
00130 /*  ===================================================================== */
00131 
00132 /*     .. Parameters .. */
00133 /*     .. */
00134 /*     .. Local Scalars .. */
00135 /*     .. */
00136 /*     .. External Functions .. */
00137 /*     .. */
00138 /*     .. External Subroutines .. */
00139 /*     .. */
00140 /*     .. Intrinsic Functions .. */
00141 /*     .. */
00142 /*     .. Scalars in Common .. */
00143 /*     .. */
00144 /*     .. Common blocks .. */
00145 /*     .. */
00146 /*     .. Executable Statements .. */
00147 
00148     /* Parameter adjustments */
00149     r_dim1 = *lda;
00150     r_offset = 1 + r_dim1;
00151     r__ -= r_offset;
00152     q_dim1 = *lda;
00153     q_offset = 1 + q_dim1;
00154     q -= q_offset;
00155     af_dim1 = *lda;
00156     af_offset = 1 + af_dim1;
00157     af -= af_offset;
00158     a_dim1 = *lda;
00159     a_offset = 1 + a_dim1;
00160     a -= a_offset;
00161     --tau;
00162     --work;
00163     --rwork;
00164     --result;
00165 
00166     /* Function Body */
00167     minmn = min(*m,*n);
00168     eps = dlamch_("Epsilon");
00169 
00170 /*     Copy the matrix A to the array AF. */
00171 
00172     zlacpy_("Full", m, n, &a[a_offset], lda, &af[af_offset], lda);
00173 
00174 /*     Factorize the matrix A in the array AF. */
00175 
00176     s_copy(srnamc_1.srnamt, "ZGERQF", (ftnlen)32, (ftnlen)6);
00177     zgerqf_(m, n, &af[af_offset], lda, &tau[1], &work[1], lwork, &info);
00178 
00179 /*     Copy details of Q */
00180 
00181     zlaset_("Full", n, n, &c_b1, &c_b1, &q[q_offset], lda);
00182     if (*m <= *n) {
00183         if (*m > 0 && *m < *n) {
00184             i__1 = *n - *m;
00185             zlacpy_("Full", m, &i__1, &af[af_offset], lda, &q[*n - *m + 1 + 
00186                     q_dim1], lda);
00187         }
00188         if (*m > 1) {
00189             i__1 = *m - 1;
00190             i__2 = *m - 1;
00191             zlacpy_("Lower", &i__1, &i__2, &af[(*n - *m + 1) * af_dim1 + 2], 
00192                     lda, &q[*n - *m + 2 + (*n - *m + 1) * q_dim1], lda);
00193         }
00194     } else {
00195         if (*n > 1) {
00196             i__1 = *n - 1;
00197             i__2 = *n - 1;
00198             zlacpy_("Lower", &i__1, &i__2, &af[*m - *n + 2 + af_dim1], lda, &
00199                     q[q_dim1 + 2], lda);
00200         }
00201     }
00202 
00203 /*     Generate the n-by-n matrix Q */
00204 
00205     s_copy(srnamc_1.srnamt, "ZUNGRQ", (ftnlen)32, (ftnlen)6);
00206     zungrq_(n, n, &minmn, &q[q_offset], lda, &tau[1], &work[1], lwork, &info);
00207 
00208 /*     Copy R */
00209 
00210     zlaset_("Full", m, n, &c_b12, &c_b12, &r__[r_offset], lda);
00211     if (*m <= *n) {
00212         if (*m > 0) {
00213             zlacpy_("Upper", m, m, &af[(*n - *m + 1) * af_dim1 + 1], lda, &
00214                     r__[(*n - *m + 1) * r_dim1 + 1], lda);
00215         }
00216     } else {
00217         if (*m > *n && *n > 0) {
00218             i__1 = *m - *n;
00219             zlacpy_("Full", &i__1, n, &af[af_offset], lda, &r__[r_offset], 
00220                     lda);
00221         }
00222         if (*n > 0) {
00223             zlacpy_("Upper", n, n, &af[*m - *n + 1 + af_dim1], lda, &r__[*m - 
00224                     *n + 1 + r_dim1], lda);
00225         }
00226     }
00227 
00228 /*     Compute R - A*Q' */
00229 
00230     zgemm_("No transpose", "Conjugate transpose", m, n, n, &c_b19, &a[
00231             a_offset], lda, &q[q_offset], lda, &c_b20, &r__[r_offset], lda);
00232 
00233 /*     Compute norm( R - Q'*A ) / ( N * norm(A) * EPS ) . */
00234 
00235     anorm = zlange_("1", m, n, &a[a_offset], lda, &rwork[1]);
00236     resid = zlange_("1", m, n, &r__[r_offset], lda, &rwork[1]);
00237     if (anorm > 0.) {
00238         result[1] = resid / (doublereal) max(1,*n) / anorm / eps;
00239     } else {
00240         result[1] = 0.;
00241     }
00242 
00243 /*     Compute I - Q*Q' */
00244 
00245     zlaset_("Full", n, n, &c_b12, &c_b20, &r__[r_offset], lda);
00246     zherk_("Upper", "No transpose", n, n, &c_b28, &q[q_offset], lda, &c_b29, &
00247             r__[r_offset], lda);
00248 
00249 /*     Compute norm( I - Q*Q' ) / ( N * EPS ) . */
00250 
00251     resid = zlansy_("1", "Upper", n, &r__[r_offset], lda, &rwork[1]);
00252 
00253     result[2] = resid / (doublereal) max(1,*n) / eps;
00254 
00255     return 0;
00256 
00257 /*     End of ZRQT01 */
00258 
00259 } /* zrqt01_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:56:43