00001 /* zpttrs.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static integer c__1 = 1; 00019 static integer c_n1 = -1; 00020 00021 /* Subroutine */ int zpttrs_(char *uplo, integer *n, integer *nrhs, 00022 doublereal *d__, doublecomplex *e, doublecomplex *b, integer *ldb, 00023 integer *info) 00024 { 00025 /* System generated locals */ 00026 integer b_dim1, b_offset, i__1, i__2, i__3; 00027 00028 /* Local variables */ 00029 integer j, jb, nb, iuplo; 00030 logical upper; 00031 extern /* Subroutine */ int zptts2_(integer *, integer *, integer *, 00032 doublereal *, doublecomplex *, doublecomplex *, integer *), 00033 xerbla_(char *, integer *); 00034 extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 00035 integer *, integer *); 00036 00037 00038 /* -- LAPACK routine (version 3.2) -- */ 00039 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00040 /* November 2006 */ 00041 00042 /* .. Scalar Arguments .. */ 00043 /* .. */ 00044 /* .. Array Arguments .. */ 00045 /* .. */ 00046 00047 /* Purpose */ 00048 /* ======= */ 00049 00050 /* ZPTTRS solves a tridiagonal system of the form */ 00051 /* A * X = B */ 00052 /* using the factorization A = U'*D*U or A = L*D*L' computed by ZPTTRF. */ 00053 /* D is a diagonal matrix specified in the vector D, U (or L) is a unit */ 00054 /* bidiagonal matrix whose superdiagonal (subdiagonal) is specified in */ 00055 /* the vector E, and X and B are N by NRHS matrices. */ 00056 00057 /* Arguments */ 00058 /* ========= */ 00059 00060 /* UPLO (input) CHARACTER*1 */ 00061 /* Specifies the form of the factorization and whether the */ 00062 /* vector E is the superdiagonal of the upper bidiagonal factor */ 00063 /* U or the subdiagonal of the lower bidiagonal factor L. */ 00064 /* = 'U': A = U'*D*U, E is the superdiagonal of U */ 00065 /* = 'L': A = L*D*L', E is the subdiagonal of L */ 00066 00067 /* N (input) INTEGER */ 00068 /* The order of the tridiagonal matrix A. N >= 0. */ 00069 00070 /* NRHS (input) INTEGER */ 00071 /* The number of right hand sides, i.e., the number of columns */ 00072 /* of the matrix B. NRHS >= 0. */ 00073 00074 /* D (input) DOUBLE PRECISION array, dimension (N) */ 00075 /* The n diagonal elements of the diagonal matrix D from the */ 00076 /* factorization A = U'*D*U or A = L*D*L'. */ 00077 00078 /* E (input) COMPLEX*16 array, dimension (N-1) */ 00079 /* If UPLO = 'U', the (n-1) superdiagonal elements of the unit */ 00080 /* bidiagonal factor U from the factorization A = U'*D*U. */ 00081 /* If UPLO = 'L', the (n-1) subdiagonal elements of the unit */ 00082 /* bidiagonal factor L from the factorization A = L*D*L'. */ 00083 00084 /* B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) */ 00085 /* On entry, the right hand side vectors B for the system of */ 00086 /* linear equations. */ 00087 /* On exit, the solution vectors, X. */ 00088 00089 /* LDB (input) INTEGER */ 00090 /* The leading dimension of the array B. LDB >= max(1,N). */ 00091 00092 /* INFO (output) INTEGER */ 00093 /* = 0: successful exit */ 00094 /* < 0: if INFO = -k, the k-th argument had an illegal value */ 00095 00096 /* ===================================================================== */ 00097 00098 /* .. Local Scalars .. */ 00099 /* .. */ 00100 /* .. External Functions .. */ 00101 /* .. */ 00102 /* .. External Subroutines .. */ 00103 /* .. */ 00104 /* .. Intrinsic Functions .. */ 00105 /* .. */ 00106 /* .. Executable Statements .. */ 00107 00108 /* Test the input arguments. */ 00109 00110 /* Parameter adjustments */ 00111 --d__; 00112 --e; 00113 b_dim1 = *ldb; 00114 b_offset = 1 + b_dim1; 00115 b -= b_offset; 00116 00117 /* Function Body */ 00118 *info = 0; 00119 upper = *(unsigned char *)uplo == 'U' || *(unsigned char *)uplo == 'u'; 00120 if (! upper && ! (*(unsigned char *)uplo == 'L' || *(unsigned char *)uplo 00121 == 'l')) { 00122 *info = -1; 00123 } else if (*n < 0) { 00124 *info = -2; 00125 } else if (*nrhs < 0) { 00126 *info = -3; 00127 } else if (*ldb < max(1,*n)) { 00128 *info = -7; 00129 } 00130 if (*info != 0) { 00131 i__1 = -(*info); 00132 xerbla_("ZPTTRS", &i__1); 00133 return 0; 00134 } 00135 00136 /* Quick return if possible */ 00137 00138 if (*n == 0 || *nrhs == 0) { 00139 return 0; 00140 } 00141 00142 /* Determine the number of right-hand sides to solve at a time. */ 00143 00144 if (*nrhs == 1) { 00145 nb = 1; 00146 } else { 00147 /* Computing MAX */ 00148 i__1 = 1, i__2 = ilaenv_(&c__1, "ZPTTRS", uplo, n, nrhs, &c_n1, &c_n1); 00149 nb = max(i__1,i__2); 00150 } 00151 00152 /* Decode UPLO */ 00153 00154 if (upper) { 00155 iuplo = 1; 00156 } else { 00157 iuplo = 0; 00158 } 00159 00160 if (nb >= *nrhs) { 00161 zptts2_(&iuplo, n, nrhs, &d__[1], &e[1], &b[b_offset], ldb); 00162 } else { 00163 i__1 = *nrhs; 00164 i__2 = nb; 00165 for (j = 1; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) { 00166 /* Computing MIN */ 00167 i__3 = *nrhs - j + 1; 00168 jb = min(i__3,nb); 00169 zptts2_(&iuplo, n, &jb, &d__[1], &e[1], &b[j * b_dim1 + 1], ldb); 00170 /* L10: */ 00171 } 00172 } 00173 00174 return 0; 00175 00176 /* End of ZPTTRS */ 00177 00178 } /* zpttrs_ */