00001 /* zpptrf.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static integer c__1 = 1; 00019 static doublereal c_b16 = -1.; 00020 00021 /* Subroutine */ int zpptrf_(char *uplo, integer *n, doublecomplex *ap, 00022 integer *info) 00023 { 00024 /* System generated locals */ 00025 integer i__1, i__2, i__3; 00026 doublereal d__1; 00027 doublecomplex z__1, z__2; 00028 00029 /* Builtin functions */ 00030 double sqrt(doublereal); 00031 00032 /* Local variables */ 00033 integer j, jc, jj; 00034 doublereal ajj; 00035 extern /* Subroutine */ int zhpr_(char *, integer *, doublereal *, 00036 doublecomplex *, integer *, doublecomplex *); 00037 extern logical lsame_(char *, char *); 00038 extern /* Double Complex */ VOID zdotc_(doublecomplex *, integer *, 00039 doublecomplex *, integer *, doublecomplex *, integer *); 00040 logical upper; 00041 extern /* Subroutine */ int ztpsv_(char *, char *, char *, integer *, 00042 doublecomplex *, doublecomplex *, integer *), xerbla_(char *, integer *), zdscal_(integer *, 00043 doublereal *, doublecomplex *, integer *); 00044 00045 00046 /* -- LAPACK routine (version 3.2) -- */ 00047 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00048 /* November 2006 */ 00049 00050 /* .. Scalar Arguments .. */ 00051 /* .. */ 00052 /* .. Array Arguments .. */ 00053 /* .. */ 00054 00055 /* Purpose */ 00056 /* ======= */ 00057 00058 /* ZPPTRF computes the Cholesky factorization of a complex Hermitian */ 00059 /* positive definite matrix A stored in packed format. */ 00060 00061 /* The factorization has the form */ 00062 /* A = U**H * U, if UPLO = 'U', or */ 00063 /* A = L * L**H, if UPLO = 'L', */ 00064 /* where U is an upper triangular matrix and L is lower triangular. */ 00065 00066 /* Arguments */ 00067 /* ========= */ 00068 00069 /* UPLO (input) CHARACTER*1 */ 00070 /* = 'U': Upper triangle of A is stored; */ 00071 /* = 'L': Lower triangle of A is stored. */ 00072 00073 /* N (input) INTEGER */ 00074 /* The order of the matrix A. N >= 0. */ 00075 00076 /* AP (input/output) COMPLEX*16 array, dimension (N*(N+1)/2) */ 00077 /* On entry, the upper or lower triangle of the Hermitian matrix */ 00078 /* A, packed columnwise in a linear array. The j-th column of A */ 00079 /* is stored in the array AP as follows: */ 00080 /* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */ 00081 /* if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. */ 00082 /* See below for further details. */ 00083 00084 /* On exit, if INFO = 0, the triangular factor U or L from the */ 00085 /* Cholesky factorization A = U**H*U or A = L*L**H, in the same */ 00086 /* storage format as A. */ 00087 00088 /* INFO (output) INTEGER */ 00089 /* = 0: successful exit */ 00090 /* < 0: if INFO = -i, the i-th argument had an illegal value */ 00091 /* > 0: if INFO = i, the leading minor of order i is not */ 00092 /* positive definite, and the factorization could not be */ 00093 /* completed. */ 00094 00095 /* Further Details */ 00096 /* =============== */ 00097 00098 /* The packed storage scheme is illustrated by the following example */ 00099 /* when N = 4, UPLO = 'U': */ 00100 00101 /* Two-dimensional storage of the Hermitian matrix A: */ 00102 00103 /* a11 a12 a13 a14 */ 00104 /* a22 a23 a24 */ 00105 /* a33 a34 (aij = conjg(aji)) */ 00106 /* a44 */ 00107 00108 /* Packed storage of the upper triangle of A: */ 00109 00110 /* AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ] */ 00111 00112 /* ===================================================================== */ 00113 00114 /* .. Parameters .. */ 00115 /* .. */ 00116 /* .. Local Scalars .. */ 00117 /* .. */ 00118 /* .. External Functions .. */ 00119 /* .. */ 00120 /* .. External Subroutines .. */ 00121 /* .. */ 00122 /* .. Intrinsic Functions .. */ 00123 /* .. */ 00124 /* .. Executable Statements .. */ 00125 00126 /* Test the input parameters. */ 00127 00128 /* Parameter adjustments */ 00129 --ap; 00130 00131 /* Function Body */ 00132 *info = 0; 00133 upper = lsame_(uplo, "U"); 00134 if (! upper && ! lsame_(uplo, "L")) { 00135 *info = -1; 00136 } else if (*n < 0) { 00137 *info = -2; 00138 } 00139 if (*info != 0) { 00140 i__1 = -(*info); 00141 xerbla_("ZPPTRF", &i__1); 00142 return 0; 00143 } 00144 00145 /* Quick return if possible */ 00146 00147 if (*n == 0) { 00148 return 0; 00149 } 00150 00151 if (upper) { 00152 00153 /* Compute the Cholesky factorization A = U'*U. */ 00154 00155 jj = 0; 00156 i__1 = *n; 00157 for (j = 1; j <= i__1; ++j) { 00158 jc = jj + 1; 00159 jj += j; 00160 00161 /* Compute elements 1:J-1 of column J. */ 00162 00163 if (j > 1) { 00164 i__2 = j - 1; 00165 ztpsv_("Upper", "Conjugate transpose", "Non-unit", &i__2, &ap[ 00166 1], &ap[jc], &c__1); 00167 } 00168 00169 /* Compute U(J,J) and test for non-positive-definiteness. */ 00170 00171 i__2 = jj; 00172 d__1 = ap[i__2].r; 00173 i__3 = j - 1; 00174 zdotc_(&z__2, &i__3, &ap[jc], &c__1, &ap[jc], &c__1); 00175 z__1.r = d__1 - z__2.r, z__1.i = -z__2.i; 00176 ajj = z__1.r; 00177 if (ajj <= 0.) { 00178 i__2 = jj; 00179 ap[i__2].r = ajj, ap[i__2].i = 0.; 00180 goto L30; 00181 } 00182 i__2 = jj; 00183 d__1 = sqrt(ajj); 00184 ap[i__2].r = d__1, ap[i__2].i = 0.; 00185 /* L10: */ 00186 } 00187 } else { 00188 00189 /* Compute the Cholesky factorization A = L*L'. */ 00190 00191 jj = 1; 00192 i__1 = *n; 00193 for (j = 1; j <= i__1; ++j) { 00194 00195 /* Compute L(J,J) and test for non-positive-definiteness. */ 00196 00197 i__2 = jj; 00198 ajj = ap[i__2].r; 00199 if (ajj <= 0.) { 00200 i__2 = jj; 00201 ap[i__2].r = ajj, ap[i__2].i = 0.; 00202 goto L30; 00203 } 00204 ajj = sqrt(ajj); 00205 i__2 = jj; 00206 ap[i__2].r = ajj, ap[i__2].i = 0.; 00207 00208 /* Compute elements J+1:N of column J and update the trailing */ 00209 /* submatrix. */ 00210 00211 if (j < *n) { 00212 i__2 = *n - j; 00213 d__1 = 1. / ajj; 00214 zdscal_(&i__2, &d__1, &ap[jj + 1], &c__1); 00215 i__2 = *n - j; 00216 zhpr_("Lower", &i__2, &c_b16, &ap[jj + 1], &c__1, &ap[jj + *n 00217 - j + 1]); 00218 jj = jj + *n - j + 1; 00219 } 00220 /* L20: */ 00221 } 00222 } 00223 goto L40; 00224 00225 L30: 00226 *info = j; 00227 00228 L40: 00229 return 0; 00230 00231 /* End of ZPPTRF */ 00232 00233 } /* zpptrf_ */