00001 /* zpot02.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static doublecomplex c_b1 = {1.,0.}; 00019 static integer c__1 = 1; 00020 00021 /* Subroutine */ int zpot02_(char *uplo, integer *n, integer *nrhs, 00022 doublecomplex *a, integer *lda, doublecomplex *x, integer *ldx, 00023 doublecomplex *b, integer *ldb, doublereal *rwork, doublereal *resid) 00024 { 00025 /* System generated locals */ 00026 integer a_dim1, a_offset, b_dim1, b_offset, x_dim1, x_offset, i__1; 00027 doublereal d__1, d__2; 00028 doublecomplex z__1; 00029 00030 /* Local variables */ 00031 integer j; 00032 doublereal eps, anorm, bnorm; 00033 extern /* Subroutine */ int zhemm_(char *, char *, integer *, integer *, 00034 doublecomplex *, doublecomplex *, integer *, doublecomplex *, 00035 integer *, doublecomplex *, doublecomplex *, integer *); 00036 doublereal xnorm; 00037 extern doublereal dlamch_(char *), zlanhe_(char *, char *, 00038 integer *, doublecomplex *, integer *, doublereal *), dzasum_(integer *, doublecomplex *, integer *); 00039 00040 00041 /* -- LAPACK test routine (version 3.1) -- */ 00042 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00043 /* November 2006 */ 00044 00045 /* .. Scalar Arguments .. */ 00046 /* .. */ 00047 /* .. Array Arguments .. */ 00048 /* .. */ 00049 00050 /* Purpose */ 00051 /* ======= */ 00052 00053 /* ZPOT02 computes the residual for the solution of a Hermitian system */ 00054 /* of linear equations A*x = b: */ 00055 00056 /* RESID = norm(B - A*X) / ( norm(A) * norm(X) * EPS ), */ 00057 00058 /* where EPS is the machine epsilon. */ 00059 00060 /* Arguments */ 00061 /* ========= */ 00062 00063 /* UPLO (input) CHARACTER*1 */ 00064 /* Specifies whether the upper or lower triangular part of the */ 00065 /* Hermitian matrix A is stored: */ 00066 /* = 'U': Upper triangular */ 00067 /* = 'L': Lower triangular */ 00068 00069 /* N (input) INTEGER */ 00070 /* The number of rows and columns of the matrix A. N >= 0. */ 00071 00072 /* NRHS (input) INTEGER */ 00073 /* The number of columns of B, the matrix of right hand sides. */ 00074 /* NRHS >= 0. */ 00075 00076 /* A (input) COMPLEX*16 array, dimension (LDA,N) */ 00077 /* The original Hermitian matrix A. */ 00078 00079 /* LDA (input) INTEGER */ 00080 /* The leading dimension of the array A. LDA >= max(1,N) */ 00081 00082 /* X (input) COMPLEX*16 array, dimension (LDX,NRHS) */ 00083 /* The computed solution vectors for the system of linear */ 00084 /* equations. */ 00085 00086 /* LDX (input) INTEGER */ 00087 /* The leading dimension of the array X. LDX >= max(1,N). */ 00088 00089 /* B (input/output) COMPLEX*16 array, dimension (LDB,NRHS) */ 00090 /* On entry, the right hand side vectors for the system of */ 00091 /* linear equations. */ 00092 /* On exit, B is overwritten with the difference B - A*X. */ 00093 00094 /* LDB (input) INTEGER */ 00095 /* The leading dimension of the array B. LDB >= max(1,N). */ 00096 00097 /* RWORK (workspace) DOUBLE PRECISION array, dimension (N) */ 00098 00099 /* RESID (output) DOUBLE PRECISION */ 00100 /* The maximum over the number of right hand sides of */ 00101 /* norm(B - A*X) / ( norm(A) * norm(X) * EPS ). */ 00102 00103 /* ===================================================================== */ 00104 00105 /* .. Parameters .. */ 00106 /* .. */ 00107 /* .. Local Scalars .. */ 00108 /* .. */ 00109 /* .. External Functions .. */ 00110 /* .. */ 00111 /* .. External Subroutines .. */ 00112 /* .. */ 00113 /* .. Intrinsic Functions .. */ 00114 /* .. */ 00115 /* .. Executable Statements .. */ 00116 00117 /* Quick exit if N = 0 or NRHS = 0. */ 00118 00119 /* Parameter adjustments */ 00120 a_dim1 = *lda; 00121 a_offset = 1 + a_dim1; 00122 a -= a_offset; 00123 x_dim1 = *ldx; 00124 x_offset = 1 + x_dim1; 00125 x -= x_offset; 00126 b_dim1 = *ldb; 00127 b_offset = 1 + b_dim1; 00128 b -= b_offset; 00129 --rwork; 00130 00131 /* Function Body */ 00132 if (*n <= 0 || *nrhs <= 0) { 00133 *resid = 0.; 00134 return 0; 00135 } 00136 00137 /* Exit with RESID = 1/EPS if ANORM = 0. */ 00138 00139 eps = dlamch_("Epsilon"); 00140 anorm = zlanhe_("1", uplo, n, &a[a_offset], lda, &rwork[1]); 00141 if (anorm <= 0.) { 00142 *resid = 1. / eps; 00143 return 0; 00144 } 00145 00146 /* Compute B - A*X */ 00147 00148 z__1.r = -1., z__1.i = -0.; 00149 zhemm_("Left", uplo, n, nrhs, &z__1, &a[a_offset], lda, &x[x_offset], ldx, 00150 &c_b1, &b[b_offset], ldb); 00151 00152 /* Compute the maximum over the number of right hand sides of */ 00153 /* norm( B - A*X ) / ( norm(A) * norm(X) * EPS ) . */ 00154 00155 *resid = 0.; 00156 i__1 = *nrhs; 00157 for (j = 1; j <= i__1; ++j) { 00158 bnorm = dzasum_(n, &b[j * b_dim1 + 1], &c__1); 00159 xnorm = dzasum_(n, &x[j * x_dim1 + 1], &c__1); 00160 if (xnorm <= 0.) { 00161 *resid = 1. / eps; 00162 } else { 00163 /* Computing MAX */ 00164 d__1 = *resid, d__2 = bnorm / anorm / xnorm / eps; 00165 *resid = max(d__1,d__2); 00166 } 00167 /* L10: */ 00168 } 00169 00170 return 0; 00171 00172 /* End of ZPOT02 */ 00173 00174 } /* zpot02_ */