zposv.c
Go to the documentation of this file.
00001 /* zposv.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Subroutine */ int zposv_(char *uplo, integer *n, integer *nrhs, 
00017         doublecomplex *a, integer *lda, doublecomplex *b, integer *ldb, 
00018         integer *info)
00019 {
00020     /* System generated locals */
00021     integer a_dim1, a_offset, b_dim1, b_offset, i__1;
00022 
00023     /* Local variables */
00024     extern logical lsame_(char *, char *);
00025     extern /* Subroutine */ int xerbla_(char *, integer *), zpotrf_(
00026             char *, integer *, doublecomplex *, integer *, integer *),
00027              zpotrs_(char *, integer *, integer *, doublecomplex *, integer *, 
00028              doublecomplex *, integer *, integer *);
00029 
00030 
00031 /*  -- LAPACK driver routine (version 3.2) -- */
00032 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00033 /*     November 2006 */
00034 
00035 /*     .. Scalar Arguments .. */
00036 /*     .. */
00037 /*     .. Array Arguments .. */
00038 /*     .. */
00039 
00040 /*  Purpose */
00041 /*  ======= */
00042 
00043 /*  ZPOSV computes the solution to a complex system of linear equations */
00044 /*     A * X = B, */
00045 /*  where A is an N-by-N Hermitian positive definite matrix and X and B */
00046 /*  are N-by-NRHS matrices. */
00047 
00048 /*  The Cholesky decomposition is used to factor A as */
00049 /*     A = U**H* U,  if UPLO = 'U', or */
00050 /*     A = L * L**H,  if UPLO = 'L', */
00051 /*  where U is an upper triangular matrix and  L is a lower triangular */
00052 /*  matrix.  The factored form of A is then used to solve the system of */
00053 /*  equations A * X = B. */
00054 
00055 /*  Arguments */
00056 /*  ========= */
00057 
00058 /*  UPLO    (input) CHARACTER*1 */
00059 /*          = 'U':  Upper triangle of A is stored; */
00060 /*          = 'L':  Lower triangle of A is stored. */
00061 
00062 /*  N       (input) INTEGER */
00063 /*          The number of linear equations, i.e., the order of the */
00064 /*          matrix A.  N >= 0. */
00065 
00066 /*  NRHS    (input) INTEGER */
00067 /*          The number of right hand sides, i.e., the number of columns */
00068 /*          of the matrix B.  NRHS >= 0. */
00069 
00070 /*  A       (input/output) COMPLEX*16 array, dimension (LDA,N) */
00071 /*          On entry, the Hermitian matrix A.  If UPLO = 'U', the leading */
00072 /*          N-by-N upper triangular part of A contains the upper */
00073 /*          triangular part of the matrix A, and the strictly lower */
00074 /*          triangular part of A is not referenced.  If UPLO = 'L', the */
00075 /*          leading N-by-N lower triangular part of A contains the lower */
00076 /*          triangular part of the matrix A, and the strictly upper */
00077 /*          triangular part of A is not referenced. */
00078 
00079 /*          On exit, if INFO = 0, the factor U or L from the Cholesky */
00080 /*          factorization A = U**H*U or A = L*L**H. */
00081 
00082 /*  LDA     (input) INTEGER */
00083 /*          The leading dimension of the array A.  LDA >= max(1,N). */
00084 
00085 /*  B       (input/output) COMPLEX*16 array, dimension (LDB,NRHS) */
00086 /*          On entry, the N-by-NRHS right hand side matrix B. */
00087 /*          On exit, if INFO = 0, the N-by-NRHS solution matrix X. */
00088 
00089 /*  LDB     (input) INTEGER */
00090 /*          The leading dimension of the array B.  LDB >= max(1,N). */
00091 
00092 /*  INFO    (output) INTEGER */
00093 /*          = 0:  successful exit */
00094 /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
00095 /*          > 0:  if INFO = i, the leading minor of order i of A is not */
00096 /*                positive definite, so the factorization could not be */
00097 /*                completed, and the solution has not been computed. */
00098 
00099 /*  ===================================================================== */
00100 
00101 /*     .. External Functions .. */
00102 /*     .. */
00103 /*     .. External Subroutines .. */
00104 /*     .. */
00105 /*     .. Intrinsic Functions .. */
00106 /*     .. */
00107 /*     .. Executable Statements .. */
00108 
00109 /*     Test the input parameters. */
00110 
00111     /* Parameter adjustments */
00112     a_dim1 = *lda;
00113     a_offset = 1 + a_dim1;
00114     a -= a_offset;
00115     b_dim1 = *ldb;
00116     b_offset = 1 + b_dim1;
00117     b -= b_offset;
00118 
00119     /* Function Body */
00120     *info = 0;
00121     if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {
00122         *info = -1;
00123     } else if (*n < 0) {
00124         *info = -2;
00125     } else if (*nrhs < 0) {
00126         *info = -3;
00127     } else if (*lda < max(1,*n)) {
00128         *info = -5;
00129     } else if (*ldb < max(1,*n)) {
00130         *info = -7;
00131     }
00132     if (*info != 0) {
00133         i__1 = -(*info);
00134         xerbla_("ZPOSV ", &i__1);
00135         return 0;
00136     }
00137 
00138 /*     Compute the Cholesky factorization A = U'*U or A = L*L'. */
00139 
00140     zpotrf_(uplo, n, &a[a_offset], lda, info);
00141     if (*info == 0) {
00142 
00143 /*        Solve the system A*X = B, overwriting B with X. */
00144 
00145         zpotrs_(uplo, n, nrhs, &a[a_offset], lda, &b[b_offset], ldb, info);
00146 
00147     }
00148     return 0;
00149 
00150 /*     End of ZPOSV */
00151 
00152 } /* zposv_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:56:43