zpftri.c
Go to the documentation of this file.
00001 /* zpftri.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Table of constant values */
00017 
00018 static doublecomplex c_b1 = {1.,0.};
00019 static doublereal c_b12 = 1.;
00020 
00021 /* Subroutine */ int zpftri_(char *transr, char *uplo, integer *n, 
00022         doublecomplex *a, integer *info)
00023 {
00024     /* System generated locals */
00025     integer i__1, i__2;
00026 
00027     /* Local variables */
00028     integer k, n1, n2;
00029     logical normaltransr;
00030     extern logical lsame_(char *, char *);
00031     extern /* Subroutine */ int zherk_(char *, char *, integer *, integer *, 
00032             doublereal *, doublecomplex *, integer *, doublereal *, 
00033             doublecomplex *, integer *);
00034     logical lower;
00035     extern /* Subroutine */ int ztrmm_(char *, char *, char *, char *, 
00036             integer *, integer *, doublecomplex *, doublecomplex *, integer *, 
00037              doublecomplex *, integer *), 
00038             xerbla_(char *, integer *);
00039     logical nisodd;
00040     extern /* Subroutine */ int zlauum_(char *, integer *, doublecomplex *, 
00041             integer *, integer *), ztftri_(char *, char *, char *, 
00042             integer *, doublecomplex *, integer *);
00043 
00044 
00045 /*  -- LAPACK routine (version 3.2)                                    -- */
00046 
00047 /*  -- Contributed by Fred Gustavson of the IBM Watson Research Center -- */
00048 /*  -- November 2008                                                   -- */
00049 
00050 /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
00051 /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
00052 
00053 /*     .. Scalar Arguments .. */
00054 /*     .. Array Arguments .. */
00055 /*     .. */
00056 
00057 /*  Purpose */
00058 /*  ======= */
00059 
00060 /*  ZPFTRI computes the inverse of a complex Hermitian positive definite */
00061 /*  matrix A using the Cholesky factorization A = U**H*U or A = L*L**H */
00062 /*  computed by ZPFTRF. */
00063 
00064 /*  Arguments */
00065 /*  ========= */
00066 
00067 /*  TRANSR    (input) CHARACTER */
00068 /*          = 'N':  The Normal TRANSR of RFP A is stored; */
00069 /*          = 'C':  The Conjugate-transpose TRANSR of RFP A is stored. */
00070 
00071 /*  UPLO    (input) CHARACTER */
00072 /*          = 'U':  Upper triangle of A is stored; */
00073 /*          = 'L':  Lower triangle of A is stored. */
00074 
00075 /*  N       (input) INTEGER */
00076 /*          The order of the matrix A.  N >= 0. */
00077 
00078 /*  A       (input/output) COMPLEX*16 array, dimension ( N*(N+1)/2 ); */
00079 /*          On entry, the Hermitian matrix A in RFP format. RFP format is */
00080 /*          described by TRANSR, UPLO, and N as follows: If TRANSR = 'N' */
00081 /*          then RFP A is (0:N,0:k-1) when N is even; k=N/2. RFP A is */
00082 /*          (0:N-1,0:k) when N is odd; k=N/2. IF TRANSR = 'C' then RFP is */
00083 /*          the Conjugate-transpose of RFP A as defined when */
00084 /*          TRANSR = 'N'. The contents of RFP A are defined by UPLO as */
00085 /*          follows: If UPLO = 'U' the RFP A contains the nt elements of */
00086 /*          upper packed A. If UPLO = 'L' the RFP A contains the elements */
00087 /*          of lower packed A. The LDA of RFP A is (N+1)/2 when TRANSR = */
00088 /*          'C'. When TRANSR is 'N' the LDA is N+1 when N is even and N */
00089 /*          is odd. See the Note below for more details. */
00090 
00091 /*          On exit, the Hermitian inverse of the original matrix, in the */
00092 /*          same storage format. */
00093 
00094 /*  INFO    (output) INTEGER */
00095 /*          = 0:  successful exit */
00096 /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
00097 /*          > 0:  if INFO = i, the (i,i) element of the factor U or L is */
00098 /*                zero, and the inverse could not be computed. */
00099 
00100 /*  Note: */
00101 /*  ===== */
00102 
00103 /*  We first consider Standard Packed Format when N is even. */
00104 /*  We give an example where N = 6. */
00105 
00106 /*      AP is Upper             AP is Lower */
00107 
00108 /*   00 01 02 03 04 05       00 */
00109 /*      11 12 13 14 15       10 11 */
00110 /*         22 23 24 25       20 21 22 */
00111 /*            33 34 35       30 31 32 33 */
00112 /*               44 45       40 41 42 43 44 */
00113 /*                  55       50 51 52 53 54 55 */
00114 
00115 
00116 /*  Let TRANSR = 'N'. RFP holds AP as follows: */
00117 /*  For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last */
00118 /*  three columns of AP upper. The lower triangle A(4:6,0:2) consists of */
00119 /*  conjugate-transpose of the first three columns of AP upper. */
00120 /*  For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first */
00121 /*  three columns of AP lower. The upper triangle A(0:2,0:2) consists of */
00122 /*  conjugate-transpose of the last three columns of AP lower. */
00123 /*  To denote conjugate we place -- above the element. This covers the */
00124 /*  case N even and TRANSR = 'N'. */
00125 
00126 /*         RFP A                   RFP A */
00127 
00128 /*                                -- -- -- */
00129 /*        03 04 05                33 43 53 */
00130 /*                                   -- -- */
00131 /*        13 14 15                00 44 54 */
00132 /*                                      -- */
00133 /*        23 24 25                10 11 55 */
00134 
00135 /*        33 34 35                20 21 22 */
00136 /*        -- */
00137 /*        00 44 45                30 31 32 */
00138 /*        -- -- */
00139 /*        01 11 55                40 41 42 */
00140 /*        -- -- -- */
00141 /*        02 12 22                50 51 52 */
00142 
00143 /*  Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate- */
00144 /*  transpose of RFP A above. One therefore gets: */
00145 
00146 
00147 /*           RFP A                   RFP A */
00148 
00149 /*     -- -- -- --                -- -- -- -- -- -- */
00150 /*     03 13 23 33 00 01 02    33 00 10 20 30 40 50 */
00151 /*     -- -- -- -- --                -- -- -- -- -- */
00152 /*     04 14 24 34 44 11 12    43 44 11 21 31 41 51 */
00153 /*     -- -- -- -- -- --                -- -- -- -- */
00154 /*     05 15 25 35 45 55 22    53 54 55 22 32 42 52 */
00155 
00156 
00157 /*  We next  consider Standard Packed Format when N is odd. */
00158 /*  We give an example where N = 5. */
00159 
00160 /*     AP is Upper                 AP is Lower */
00161 
00162 /*   00 01 02 03 04              00 */
00163 /*      11 12 13 14              10 11 */
00164 /*         22 23 24              20 21 22 */
00165 /*            33 34              30 31 32 33 */
00166 /*               44              40 41 42 43 44 */
00167 
00168 
00169 /*  Let TRANSR = 'N'. RFP holds AP as follows: */
00170 /*  For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last */
00171 /*  three columns of AP upper. The lower triangle A(3:4,0:1) consists of */
00172 /*  conjugate-transpose of the first two   columns of AP upper. */
00173 /*  For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first */
00174 /*  three columns of AP lower. The upper triangle A(0:1,1:2) consists of */
00175 /*  conjugate-transpose of the last two   columns of AP lower. */
00176 /*  To denote conjugate we place -- above the element. This covers the */
00177 /*  case N odd  and TRANSR = 'N'. */
00178 
00179 /*         RFP A                   RFP A */
00180 
00181 /*                                   -- -- */
00182 /*        02 03 04                00 33 43 */
00183 /*                                      -- */
00184 /*        12 13 14                10 11 44 */
00185 
00186 /*        22 23 24                20 21 22 */
00187 /*        -- */
00188 /*        00 33 34                30 31 32 */
00189 /*        -- -- */
00190 /*        01 11 44                40 41 42 */
00191 
00192 /*  Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate- */
00193 /*  transpose of RFP A above. One therefore gets: */
00194 
00195 
00196 /*           RFP A                   RFP A */
00197 
00198 /*     -- -- --                   -- -- -- -- -- -- */
00199 /*     02 12 22 00 01             00 10 20 30 40 50 */
00200 /*     -- -- -- --                   -- -- -- -- -- */
00201 /*     03 13 23 33 11             33 11 21 31 41 51 */
00202 /*     -- -- -- -- --                   -- -- -- -- */
00203 /*     04 14 24 34 44             43 44 22 32 42 52 */
00204 
00205 /*  ===================================================================== */
00206 
00207 /*     .. Parameters .. */
00208 /*     .. */
00209 /*     .. Local Scalars .. */
00210 /*     .. */
00211 /*     .. External Functions .. */
00212 /*     .. */
00213 /*     .. External Subroutines .. */
00214 /*     .. */
00215 /*     .. Intrinsic Functions .. */
00216 /*     .. */
00217 /*     .. Executable Statements .. */
00218 
00219 /*     Test the input parameters. */
00220 
00221     *info = 0;
00222     normaltransr = lsame_(transr, "N");
00223     lower = lsame_(uplo, "L");
00224     if (! normaltransr && ! lsame_(transr, "C")) {
00225         *info = -1;
00226     } else if (! lower && ! lsame_(uplo, "U")) {
00227         *info = -2;
00228     } else if (*n < 0) {
00229         *info = -3;
00230     }
00231     if (*info != 0) {
00232         i__1 = -(*info);
00233         xerbla_("ZPFTRI", &i__1);
00234         return 0;
00235     }
00236 
00237 /*     Quick return if possible */
00238 
00239     if (*n == 0) {
00240         return 0;
00241     }
00242 
00243 /*     Invert the triangular Cholesky factor U or L. */
00244 
00245     ztftri_(transr, uplo, "N", n, a, info);
00246     if (*info > 0) {
00247         return 0;
00248     }
00249 
00250 /*     If N is odd, set NISODD = .TRUE. */
00251 /*     If N is even, set K = N/2 and NISODD = .FALSE. */
00252 
00253     if (*n % 2 == 0) {
00254         k = *n / 2;
00255         nisodd = FALSE_;
00256     } else {
00257         nisodd = TRUE_;
00258     }
00259 
00260 /*     Set N1 and N2 depending on LOWER */
00261 
00262     if (lower) {
00263         n2 = *n / 2;
00264         n1 = *n - n2;
00265     } else {
00266         n1 = *n / 2;
00267         n2 = *n - n1;
00268     }
00269 
00270 /*     Start execution of triangular matrix multiply: inv(U)*inv(U)^C or */
00271 /*     inv(L)^C*inv(L). There are eight cases. */
00272 
00273     if (nisodd) {
00274 
00275 /*        N is odd */
00276 
00277         if (normaltransr) {
00278 
00279 /*           N is odd and TRANSR = 'N' */
00280 
00281             if (lower) {
00282 
00283 /*              SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:N1-1) ) */
00284 /*              T1 -> a(0,0), T2 -> a(0,1), S -> a(N1,0) */
00285 /*              T1 -> a(0), T2 -> a(n), S -> a(N1) */
00286 
00287                 zlauum_("L", &n1, a, n, info);
00288                 zherk_("L", "C", &n1, &n2, &c_b12, &a[n1], n, &c_b12, a, n);
00289                 ztrmm_("L", "U", "N", "N", &n2, &n1, &c_b1, &a[*n], n, &a[n1], 
00290                          n);
00291                 zlauum_("U", &n2, &a[*n], n, info);
00292 
00293             } else {
00294 
00295 /*              SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:N2-1) */
00296 /*              T1 -> a(N1+1,0), T2 -> a(N1,0), S -> a(0,0) */
00297 /*              T1 -> a(N2), T2 -> a(N1), S -> a(0) */
00298 
00299                 zlauum_("L", &n1, &a[n2], n, info);
00300                 zherk_("L", "N", &n1, &n2, &c_b12, a, n, &c_b12, &a[n2], n);
00301                 ztrmm_("R", "U", "C", "N", &n1, &n2, &c_b1, &a[n1], n, a, n);
00302                 zlauum_("U", &n2, &a[n1], n, info);
00303 
00304             }
00305 
00306         } else {
00307 
00308 /*           N is odd and TRANSR = 'C' */
00309 
00310             if (lower) {
00311 
00312 /*              SRPA for LOWER, TRANSPOSE, and N is odd */
00313 /*              T1 -> a(0), T2 -> a(1), S -> a(0+N1*N1) */
00314 
00315                 zlauum_("U", &n1, a, &n1, info);
00316                 zherk_("U", "N", &n1, &n2, &c_b12, &a[n1 * n1], &n1, &c_b12, 
00317                         a, &n1);
00318                 ztrmm_("R", "L", "N", "N", &n1, &n2, &c_b1, &a[1], &n1, &a[n1 
00319                         * n1], &n1);
00320                 zlauum_("L", &n2, &a[1], &n1, info);
00321 
00322             } else {
00323 
00324 /*              SRPA for UPPER, TRANSPOSE, and N is odd */
00325 /*              T1 -> a(0+N2*N2), T2 -> a(0+N1*N2), S -> a(0) */
00326 
00327                 zlauum_("U", &n1, &a[n2 * n2], &n2, info);
00328                 zherk_("U", "C", &n1, &n2, &c_b12, a, &n2, &c_b12, &a[n2 * n2]
00329 , &n2);
00330                 ztrmm_("L", "L", "C", "N", &n2, &n1, &c_b1, &a[n1 * n2], &n2, 
00331                         a, &n2);
00332                 zlauum_("L", &n2, &a[n1 * n2], &n2, info);
00333 
00334             }
00335 
00336         }
00337 
00338     } else {
00339 
00340 /*        N is even */
00341 
00342         if (normaltransr) {
00343 
00344 /*           N is even and TRANSR = 'N' */
00345 
00346             if (lower) {
00347 
00348 /*              SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) ) */
00349 /*              T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0) */
00350 /*              T1 -> a(1), T2 -> a(0), S -> a(k+1) */
00351 
00352                 i__1 = *n + 1;
00353                 zlauum_("L", &k, &a[1], &i__1, info);
00354                 i__1 = *n + 1;
00355                 i__2 = *n + 1;
00356                 zherk_("L", "C", &k, &k, &c_b12, &a[k + 1], &i__1, &c_b12, &a[
00357                         1], &i__2);
00358                 i__1 = *n + 1;
00359                 i__2 = *n + 1;
00360                 ztrmm_("L", "U", "N", "N", &k, &k, &c_b1, a, &i__1, &a[k + 1], 
00361                          &i__2);
00362                 i__1 = *n + 1;
00363                 zlauum_("U", &k, a, &i__1, info);
00364 
00365             } else {
00366 
00367 /*              SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) ) */
00368 /*              T1 -> a(k+1,0) ,  T2 -> a(k,0),   S -> a(0,0) */
00369 /*              T1 -> a(k+1), T2 -> a(k), S -> a(0) */
00370 
00371                 i__1 = *n + 1;
00372                 zlauum_("L", &k, &a[k + 1], &i__1, info);
00373                 i__1 = *n + 1;
00374                 i__2 = *n + 1;
00375                 zherk_("L", "N", &k, &k, &c_b12, a, &i__1, &c_b12, &a[k + 1], 
00376                         &i__2);
00377                 i__1 = *n + 1;
00378                 i__2 = *n + 1;
00379                 ztrmm_("R", "U", "C", "N", &k, &k, &c_b1, &a[k], &i__1, a, &
00380                         i__2);
00381                 i__1 = *n + 1;
00382                 zlauum_("U", &k, &a[k], &i__1, info);
00383 
00384             }
00385 
00386         } else {
00387 
00388 /*           N is even and TRANSR = 'C' */
00389 
00390             if (lower) {
00391 
00392 /*              SRPA for LOWER, TRANSPOSE, and N is even (see paper) */
00393 /*              T1 -> B(0,1), T2 -> B(0,0), S -> B(0,k+1), */
00394 /*              T1 -> a(0+k), T2 -> a(0+0), S -> a(0+k*(k+1)); lda=k */
00395 
00396                 zlauum_("U", &k, &a[k], &k, info);
00397                 zherk_("U", "N", &k, &k, &c_b12, &a[k * (k + 1)], &k, &c_b12, 
00398                         &a[k], &k);
00399                 ztrmm_("R", "L", "N", "N", &k, &k, &c_b1, a, &k, &a[k * (k + 
00400                         1)], &k);
00401                 zlauum_("L", &k, a, &k, info);
00402 
00403             } else {
00404 
00405 /*              SRPA for UPPER, TRANSPOSE, and N is even (see paper) */
00406 /*              T1 -> B(0,k+1),     T2 -> B(0,k),   S -> B(0,0), */
00407 /*              T1 -> a(0+k*(k+1)), T2 -> a(0+k*k), S -> a(0+0)); lda=k */
00408 
00409                 zlauum_("U", &k, &a[k * (k + 1)], &k, info);
00410                 zherk_("U", "C", &k, &k, &c_b12, a, &k, &c_b12, &a[k * (k + 1)
00411                         ], &k);
00412                 ztrmm_("L", "L", "C", "N", &k, &k, &c_b1, &a[k * k], &k, a, &
00413                         k);
00414                 zlauum_("L", &k, &a[k * k], &k, info);
00415 
00416             }
00417 
00418         }
00419 
00420     }
00421 
00422     return 0;
00423 
00424 /*     End of ZPFTRI */
00425 
00426 } /* zpftri_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:56:42