zlarf.c
Go to the documentation of this file.
00001 /* zlarf.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Table of constant values */
00017 
00018 static doublecomplex c_b1 = {1.,0.};
00019 static doublecomplex c_b2 = {0.,0.};
00020 static integer c__1 = 1;
00021 
00022 /* Subroutine */ int zlarf_(char *side, integer *m, integer *n, doublecomplex 
00023         *v, integer *incv, doublecomplex *tau, doublecomplex *c__, integer *
00024         ldc, doublecomplex *work)
00025 {
00026     /* System generated locals */
00027     integer c_dim1, c_offset, i__1;
00028     doublecomplex z__1;
00029 
00030     /* Local variables */
00031     integer i__;
00032     logical applyleft;
00033     extern logical lsame_(char *, char *);
00034     integer lastc;
00035     extern /* Subroutine */ int zgerc_(integer *, integer *, doublecomplex *, 
00036             doublecomplex *, integer *, doublecomplex *, integer *, 
00037             doublecomplex *, integer *), zgemv_(char *, integer *, integer *, 
00038             doublecomplex *, doublecomplex *, integer *, doublecomplex *, 
00039             integer *, doublecomplex *, doublecomplex *, integer *);
00040     integer lastv;
00041     extern integer ilazlc_(integer *, integer *, doublecomplex *, integer *), 
00042             ilazlr_(integer *, integer *, doublecomplex *, integer *);
00043 
00044 
00045 /*  -- LAPACK auxiliary routine (version 3.2) -- */
00046 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00047 /*     November 2006 */
00048 
00049 /*     .. Scalar Arguments .. */
00050 /*     .. */
00051 /*     .. Array Arguments .. */
00052 /*     .. */
00053 
00054 /*  Purpose */
00055 /*  ======= */
00056 
00057 /*  ZLARF applies a complex elementary reflector H to a complex M-by-N */
00058 /*  matrix C, from either the left or the right. H is represented in the */
00059 /*  form */
00060 
00061 /*        H = I - tau * v * v' */
00062 
00063 /*  where tau is a complex scalar and v is a complex vector. */
00064 
00065 /*  If tau = 0, then H is taken to be the unit matrix. */
00066 
00067 /*  To apply H' (the conjugate transpose of H), supply conjg(tau) instead */
00068 /*  tau. */
00069 
00070 /*  Arguments */
00071 /*  ========= */
00072 
00073 /*  SIDE    (input) CHARACTER*1 */
00074 /*          = 'L': form  H * C */
00075 /*          = 'R': form  C * H */
00076 
00077 /*  M       (input) INTEGER */
00078 /*          The number of rows of the matrix C. */
00079 
00080 /*  N       (input) INTEGER */
00081 /*          The number of columns of the matrix C. */
00082 
00083 /*  V       (input) COMPLEX*16 array, dimension */
00084 /*                     (1 + (M-1)*abs(INCV)) if SIDE = 'L' */
00085 /*                  or (1 + (N-1)*abs(INCV)) if SIDE = 'R' */
00086 /*          The vector v in the representation of H. V is not used if */
00087 /*          TAU = 0. */
00088 
00089 /*  INCV    (input) INTEGER */
00090 /*          The increment between elements of v. INCV <> 0. */
00091 
00092 /*  TAU     (input) COMPLEX*16 */
00093 /*          The value tau in the representation of H. */
00094 
00095 /*  C       (input/output) COMPLEX*16 array, dimension (LDC,N) */
00096 /*          On entry, the M-by-N matrix C. */
00097 /*          On exit, C is overwritten by the matrix H * C if SIDE = 'L', */
00098 /*          or C * H if SIDE = 'R'. */
00099 
00100 /*  LDC     (input) INTEGER */
00101 /*          The leading dimension of the array C. LDC >= max(1,M). */
00102 
00103 /*  WORK    (workspace) COMPLEX*16 array, dimension */
00104 /*                         (N) if SIDE = 'L' */
00105 /*                      or (M) if SIDE = 'R' */
00106 
00107 /*  ===================================================================== */
00108 
00109 /*     .. Parameters .. */
00110 /*     .. */
00111 /*     .. Local Scalars .. */
00112 /*     .. */
00113 /*     .. External Subroutines .. */
00114 /*     .. */
00115 /*     .. External Functions .. */
00116 /*     .. */
00117 /*     .. Executable Statements .. */
00118 
00119     /* Parameter adjustments */
00120     --v;
00121     c_dim1 = *ldc;
00122     c_offset = 1 + c_dim1;
00123     c__ -= c_offset;
00124     --work;
00125 
00126     /* Function Body */
00127     applyleft = lsame_(side, "L");
00128     lastv = 0;
00129     lastc = 0;
00130     if (tau->r != 0. || tau->i != 0.) {
00131 /*     Set up variables for scanning V.  LASTV begins pointing to the end */
00132 /*     of V. */
00133         if (applyleft) {
00134             lastv = *m;
00135         } else {
00136             lastv = *n;
00137         }
00138         if (*incv > 0) {
00139             i__ = (lastv - 1) * *incv + 1;
00140         } else {
00141             i__ = 1;
00142         }
00143 /*     Look for the last non-zero row in V. */
00144         for(;;) { /* while(complicated condition) */
00145             i__1 = i__;
00146             if (!(lastv > 0 && (v[i__1].r == 0. && v[i__1].i == 0.)))
00147                 break;
00148             --lastv;
00149             i__ -= *incv;
00150         }
00151         if (applyleft) {
00152 /*     Scan for the last non-zero column in C(1:lastv,:). */
00153             lastc = ilazlc_(&lastv, n, &c__[c_offset], ldc);
00154         } else {
00155 /*     Scan for the last non-zero row in C(:,1:lastv). */
00156             lastc = ilazlr_(m, &lastv, &c__[c_offset], ldc);
00157         }
00158     }
00159 /*     Note that lastc.eq.0 renders the BLAS operations null; no special */
00160 /*     case is needed at this level. */
00161     if (applyleft) {
00162 
00163 /*        Form  H * C */
00164 
00165         if (lastv > 0) {
00166 
00167 /*           w(1:lastc,1) := C(1:lastv,1:lastc)' * v(1:lastv,1) */
00168 
00169             zgemv_("Conjugate transpose", &lastv, &lastc, &c_b1, &c__[
00170                     c_offset], ldc, &v[1], incv, &c_b2, &work[1], &c__1);
00171 
00172 /*           C(1:lastv,1:lastc) := C(...) - v(1:lastv,1) * w(1:lastc,1)' */
00173 
00174             z__1.r = -tau->r, z__1.i = -tau->i;
00175             zgerc_(&lastv, &lastc, &z__1, &v[1], incv, &work[1], &c__1, &c__[
00176                     c_offset], ldc);
00177         }
00178     } else {
00179 
00180 /*        Form  C * H */
00181 
00182         if (lastv > 0) {
00183 
00184 /*           w(1:lastc,1) := C(1:lastc,1:lastv) * v(1:lastv,1) */
00185 
00186             zgemv_("No transpose", &lastc, &lastv, &c_b1, &c__[c_offset], ldc, 
00187                      &v[1], incv, &c_b2, &work[1], &c__1);
00188 
00189 /*           C(1:lastc,1:lastv) := C(...) - w(1:lastc,1) * v(1:lastv,1)' */
00190 
00191             z__1.r = -tau->r, z__1.i = -tau->i;
00192             zgerc_(&lastc, &lastv, &z__1, &work[1], &c__1, &v[1], incv, &c__[
00193                     c_offset], ldc);
00194         }
00195     }
00196     return 0;
00197 
00198 /*     End of ZLARF */
00199 
00200 } /* zlarf_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:56:41