00001 /* zlaqsp.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Subroutine */ int zlaqsp_(char *uplo, integer *n, doublecomplex *ap, 00017 doublereal *s, doublereal *scond, doublereal *amax, char *equed) 00018 { 00019 /* System generated locals */ 00020 integer i__1, i__2, i__3, i__4; 00021 doublereal d__1; 00022 doublecomplex z__1; 00023 00024 /* Local variables */ 00025 integer i__, j, jc; 00026 doublereal cj, large; 00027 extern logical lsame_(char *, char *); 00028 doublereal small; 00029 extern doublereal dlamch_(char *); 00030 00031 00032 /* -- LAPACK auxiliary routine (version 3.2) -- */ 00033 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00034 /* November 2006 */ 00035 00036 /* .. Scalar Arguments .. */ 00037 /* .. */ 00038 /* .. Array Arguments .. */ 00039 /* .. */ 00040 00041 /* Purpose */ 00042 /* ======= */ 00043 00044 /* ZLAQSP equilibrates a symmetric matrix A using the scaling factors */ 00045 /* in the vector S. */ 00046 00047 /* Arguments */ 00048 /* ========= */ 00049 00050 /* UPLO (input) CHARACTER*1 */ 00051 /* Specifies whether the upper or lower triangular part of the */ 00052 /* symmetric matrix A is stored. */ 00053 /* = 'U': Upper triangular */ 00054 /* = 'L': Lower triangular */ 00055 00056 /* N (input) INTEGER */ 00057 /* The order of the matrix A. N >= 0. */ 00058 00059 /* AP (input/output) COMPLEX*16 array, dimension (N*(N+1)/2) */ 00060 /* On entry, the upper or lower triangle of the symmetric matrix */ 00061 /* A, packed columnwise in a linear array. The j-th column of A */ 00062 /* is stored in the array AP as follows: */ 00063 /* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */ 00064 /* if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. */ 00065 00066 /* On exit, the equilibrated matrix: diag(S) * A * diag(S), in */ 00067 /* the same storage format as A. */ 00068 00069 /* S (input) DOUBLE PRECISION array, dimension (N) */ 00070 /* The scale factors for A. */ 00071 00072 /* SCOND (input) DOUBLE PRECISION */ 00073 /* Ratio of the smallest S(i) to the largest S(i). */ 00074 00075 /* AMAX (input) DOUBLE PRECISION */ 00076 /* Absolute value of largest matrix entry. */ 00077 00078 /* EQUED (output) CHARACTER*1 */ 00079 /* Specifies whether or not equilibration was done. */ 00080 /* = 'N': No equilibration. */ 00081 /* = 'Y': Equilibration was done, i.e., A has been replaced by */ 00082 /* diag(S) * A * diag(S). */ 00083 00084 /* Internal Parameters */ 00085 /* =================== */ 00086 00087 /* THRESH is a threshold value used to decide if scaling should be done */ 00088 /* based on the ratio of the scaling factors. If SCOND < THRESH, */ 00089 /* scaling is done. */ 00090 00091 /* LARGE and SMALL are threshold values used to decide if scaling should */ 00092 /* be done based on the absolute size of the largest matrix element. */ 00093 /* If AMAX > LARGE or AMAX < SMALL, scaling is done. */ 00094 00095 /* ===================================================================== */ 00096 00097 /* .. Parameters .. */ 00098 /* .. */ 00099 /* .. Local Scalars .. */ 00100 /* .. */ 00101 /* .. External Functions .. */ 00102 /* .. */ 00103 /* .. Executable Statements .. */ 00104 00105 /* Quick return if possible */ 00106 00107 /* Parameter adjustments */ 00108 --s; 00109 --ap; 00110 00111 /* Function Body */ 00112 if (*n <= 0) { 00113 *(unsigned char *)equed = 'N'; 00114 return 0; 00115 } 00116 00117 /* Initialize LARGE and SMALL. */ 00118 00119 small = dlamch_("Safe minimum") / dlamch_("Precision"); 00120 large = 1. / small; 00121 00122 if (*scond >= .1 && *amax >= small && *amax <= large) { 00123 00124 /* No equilibration */ 00125 00126 *(unsigned char *)equed = 'N'; 00127 } else { 00128 00129 /* Replace A by diag(S) * A * diag(S). */ 00130 00131 if (lsame_(uplo, "U")) { 00132 00133 /* Upper triangle of A is stored. */ 00134 00135 jc = 1; 00136 i__1 = *n; 00137 for (j = 1; j <= i__1; ++j) { 00138 cj = s[j]; 00139 i__2 = j; 00140 for (i__ = 1; i__ <= i__2; ++i__) { 00141 i__3 = jc + i__ - 1; 00142 d__1 = cj * s[i__]; 00143 i__4 = jc + i__ - 1; 00144 z__1.r = d__1 * ap[i__4].r, z__1.i = d__1 * ap[i__4].i; 00145 ap[i__3].r = z__1.r, ap[i__3].i = z__1.i; 00146 /* L10: */ 00147 } 00148 jc += j; 00149 /* L20: */ 00150 } 00151 } else { 00152 00153 /* Lower triangle of A is stored. */ 00154 00155 jc = 1; 00156 i__1 = *n; 00157 for (j = 1; j <= i__1; ++j) { 00158 cj = s[j]; 00159 i__2 = *n; 00160 for (i__ = j; i__ <= i__2; ++i__) { 00161 i__3 = jc + i__ - j; 00162 d__1 = cj * s[i__]; 00163 i__4 = jc + i__ - j; 00164 z__1.r = d__1 * ap[i__4].r, z__1.i = d__1 * ap[i__4].i; 00165 ap[i__3].r = z__1.r, ap[i__3].i = z__1.i; 00166 /* L30: */ 00167 } 00168 jc = jc + *n - j + 1; 00169 /* L40: */ 00170 } 00171 } 00172 *(unsigned char *)equed = 'Y'; 00173 } 00174 00175 return 0; 00176 00177 /* End of ZLAQSP */ 00178 00179 } /* zlaqsp_ */