00001 /* zlaqsb.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Subroutine */ int zlaqsb_(char *uplo, integer *n, integer *kd, 00017 doublecomplex *ab, integer *ldab, doublereal *s, doublereal *scond, 00018 doublereal *amax, char *equed) 00019 { 00020 /* System generated locals */ 00021 integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4; 00022 doublereal d__1; 00023 doublecomplex z__1; 00024 00025 /* Local variables */ 00026 integer i__, j; 00027 doublereal cj, large; 00028 extern logical lsame_(char *, char *); 00029 doublereal small; 00030 extern doublereal dlamch_(char *); 00031 00032 00033 /* -- LAPACK auxiliary routine (version 3.2) -- */ 00034 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00035 /* November 2006 */ 00036 00037 /* .. Scalar Arguments .. */ 00038 /* .. */ 00039 /* .. Array Arguments .. */ 00040 /* .. */ 00041 00042 /* Purpose */ 00043 /* ======= */ 00044 00045 /* ZLAQSB equilibrates a symmetric band matrix A using the scaling */ 00046 /* factors in the vector S. */ 00047 00048 /* Arguments */ 00049 /* ========= */ 00050 00051 /* UPLO (input) CHARACTER*1 */ 00052 /* Specifies whether the upper or lower triangular part of the */ 00053 /* symmetric matrix A is stored. */ 00054 /* = 'U': Upper triangular */ 00055 /* = 'L': Lower triangular */ 00056 00057 /* N (input) INTEGER */ 00058 /* The order of the matrix A. N >= 0. */ 00059 00060 /* KD (input) INTEGER */ 00061 /* The number of super-diagonals of the matrix A if UPLO = 'U', */ 00062 /* or the number of sub-diagonals if UPLO = 'L'. KD >= 0. */ 00063 00064 /* AB (input/output) COMPLEX*16 array, dimension (LDAB,N) */ 00065 /* On entry, the upper or lower triangle of the symmetric band */ 00066 /* matrix A, stored in the first KD+1 rows of the array. The */ 00067 /* j-th column of A is stored in the j-th column of the array AB */ 00068 /* as follows: */ 00069 /* if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; */ 00070 /* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). */ 00071 00072 /* On exit, if INFO = 0, the triangular factor U or L from the */ 00073 /* Cholesky factorization A = U'*U or A = L*L' of the band */ 00074 /* matrix A, in the same storage format as A. */ 00075 00076 /* LDAB (input) INTEGER */ 00077 /* The leading dimension of the array AB. LDAB >= KD+1. */ 00078 00079 /* S (input) DOUBLE PRECISION array, dimension (N) */ 00080 /* The scale factors for A. */ 00081 00082 /* SCOND (input) DOUBLE PRECISION */ 00083 /* Ratio of the smallest S(i) to the largest S(i). */ 00084 00085 /* AMAX (input) DOUBLE PRECISION */ 00086 /* Absolute value of largest matrix entry. */ 00087 00088 /* EQUED (output) CHARACTER*1 */ 00089 /* Specifies whether or not equilibration was done. */ 00090 /* = 'N': No equilibration. */ 00091 /* = 'Y': Equilibration was done, i.e., A has been replaced by */ 00092 /* diag(S) * A * diag(S). */ 00093 00094 /* Internal Parameters */ 00095 /* =================== */ 00096 00097 /* THRESH is a threshold value used to decide if scaling should be done */ 00098 /* based on the ratio of the scaling factors. If SCOND < THRESH, */ 00099 /* scaling is done. */ 00100 00101 /* LARGE and SMALL are threshold values used to decide if scaling should */ 00102 /* be done based on the absolute size of the largest matrix element. */ 00103 /* If AMAX > LARGE or AMAX < SMALL, scaling is done. */ 00104 00105 /* ===================================================================== */ 00106 00107 /* .. Parameters .. */ 00108 /* .. */ 00109 /* .. Local Scalars .. */ 00110 /* .. */ 00111 /* .. External Functions .. */ 00112 /* .. */ 00113 /* .. Intrinsic Functions .. */ 00114 /* .. */ 00115 /* .. Executable Statements .. */ 00116 00117 /* Quick return if possible */ 00118 00119 /* Parameter adjustments */ 00120 ab_dim1 = *ldab; 00121 ab_offset = 1 + ab_dim1; 00122 ab -= ab_offset; 00123 --s; 00124 00125 /* Function Body */ 00126 if (*n <= 0) { 00127 *(unsigned char *)equed = 'N'; 00128 return 0; 00129 } 00130 00131 /* Initialize LARGE and SMALL. */ 00132 00133 small = dlamch_("Safe minimum") / dlamch_("Precision"); 00134 large = 1. / small; 00135 00136 if (*scond >= .1 && *amax >= small && *amax <= large) { 00137 00138 /* No equilibration */ 00139 00140 *(unsigned char *)equed = 'N'; 00141 } else { 00142 00143 /* Replace A by diag(S) * A * diag(S). */ 00144 00145 if (lsame_(uplo, "U")) { 00146 00147 /* Upper triangle of A is stored in band format. */ 00148 00149 i__1 = *n; 00150 for (j = 1; j <= i__1; ++j) { 00151 cj = s[j]; 00152 /* Computing MAX */ 00153 i__2 = 1, i__3 = j - *kd; 00154 i__4 = j; 00155 for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) { 00156 i__2 = *kd + 1 + i__ - j + j * ab_dim1; 00157 d__1 = cj * s[i__]; 00158 i__3 = *kd + 1 + i__ - j + j * ab_dim1; 00159 z__1.r = d__1 * ab[i__3].r, z__1.i = d__1 * ab[i__3].i; 00160 ab[i__2].r = z__1.r, ab[i__2].i = z__1.i; 00161 /* L10: */ 00162 } 00163 /* L20: */ 00164 } 00165 } else { 00166 00167 /* Lower triangle of A is stored. */ 00168 00169 i__1 = *n; 00170 for (j = 1; j <= i__1; ++j) { 00171 cj = s[j]; 00172 /* Computing MIN */ 00173 i__2 = *n, i__3 = j + *kd; 00174 i__4 = min(i__2,i__3); 00175 for (i__ = j; i__ <= i__4; ++i__) { 00176 i__2 = i__ + 1 - j + j * ab_dim1; 00177 d__1 = cj * s[i__]; 00178 i__3 = i__ + 1 - j + j * ab_dim1; 00179 z__1.r = d__1 * ab[i__3].r, z__1.i = d__1 * ab[i__3].i; 00180 ab[i__2].r = z__1.r, ab[i__2].i = z__1.i; 00181 /* L30: */ 00182 } 00183 /* L40: */ 00184 } 00185 } 00186 *(unsigned char *)equed = 'Y'; 00187 } 00188 00189 return 0; 00190 00191 /* End of ZLAQSB */ 00192 00193 } /* zlaqsb_ */