00001 /* zlanht.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static integer c__1 = 1; 00019 00020 doublereal zlanht_(char *norm, integer *n, doublereal *d__, doublecomplex *e) 00021 { 00022 /* System generated locals */ 00023 integer i__1; 00024 doublereal ret_val, d__1, d__2, d__3; 00025 00026 /* Builtin functions */ 00027 double z_abs(doublecomplex *), sqrt(doublereal); 00028 00029 /* Local variables */ 00030 integer i__; 00031 doublereal sum, scale; 00032 extern logical lsame_(char *, char *); 00033 doublereal anorm; 00034 extern /* Subroutine */ int dlassq_(integer *, doublereal *, integer *, 00035 doublereal *, doublereal *), zlassq_(integer *, doublecomplex *, 00036 integer *, doublereal *, doublereal *); 00037 00038 00039 /* -- LAPACK auxiliary routine (version 3.2) -- */ 00040 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00041 /* November 2006 */ 00042 00043 /* .. Scalar Arguments .. */ 00044 /* .. */ 00045 /* .. Array Arguments .. */ 00046 /* .. */ 00047 00048 /* Purpose */ 00049 /* ======= */ 00050 00051 /* ZLANHT returns the value of the one norm, or the Frobenius norm, or */ 00052 /* the infinity norm, or the element of largest absolute value of a */ 00053 /* complex Hermitian tridiagonal matrix A. */ 00054 00055 /* Description */ 00056 /* =========== */ 00057 00058 /* ZLANHT returns the value */ 00059 00060 /* ZLANHT = ( max(abs(A(i,j))), NORM = 'M' or 'm' */ 00061 /* ( */ 00062 /* ( norm1(A), NORM = '1', 'O' or 'o' */ 00063 /* ( */ 00064 /* ( normI(A), NORM = 'I' or 'i' */ 00065 /* ( */ 00066 /* ( normF(A), NORM = 'F', 'f', 'E' or 'e' */ 00067 00068 /* where norm1 denotes the one norm of a matrix (maximum column sum), */ 00069 /* normI denotes the infinity norm of a matrix (maximum row sum) and */ 00070 /* normF denotes the Frobenius norm of a matrix (square root of sum of */ 00071 /* squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. */ 00072 00073 /* Arguments */ 00074 /* ========= */ 00075 00076 /* NORM (input) CHARACTER*1 */ 00077 /* Specifies the value to be returned in ZLANHT as described */ 00078 /* above. */ 00079 00080 /* N (input) INTEGER */ 00081 /* The order of the matrix A. N >= 0. When N = 0, ZLANHT is */ 00082 /* set to zero. */ 00083 00084 /* D (input) DOUBLE PRECISION array, dimension (N) */ 00085 /* The diagonal elements of A. */ 00086 00087 /* E (input) COMPLEX*16 array, dimension (N-1) */ 00088 /* The (n-1) sub-diagonal or super-diagonal elements of A. */ 00089 00090 /* ===================================================================== */ 00091 00092 /* .. Parameters .. */ 00093 /* .. */ 00094 /* .. Local Scalars .. */ 00095 /* .. */ 00096 /* .. External Functions .. */ 00097 /* .. */ 00098 /* .. External Subroutines .. */ 00099 /* .. */ 00100 /* .. Intrinsic Functions .. */ 00101 /* .. */ 00102 /* .. Executable Statements .. */ 00103 00104 /* Parameter adjustments */ 00105 --e; 00106 --d__; 00107 00108 /* Function Body */ 00109 if (*n <= 0) { 00110 anorm = 0.; 00111 } else if (lsame_(norm, "M")) { 00112 00113 /* Find max(abs(A(i,j))). */ 00114 00115 anorm = (d__1 = d__[*n], abs(d__1)); 00116 i__1 = *n - 1; 00117 for (i__ = 1; i__ <= i__1; ++i__) { 00118 /* Computing MAX */ 00119 d__2 = anorm, d__3 = (d__1 = d__[i__], abs(d__1)); 00120 anorm = max(d__2,d__3); 00121 /* Computing MAX */ 00122 d__1 = anorm, d__2 = z_abs(&e[i__]); 00123 anorm = max(d__1,d__2); 00124 /* L10: */ 00125 } 00126 } else if (lsame_(norm, "O") || *(unsigned char *) 00127 norm == '1' || lsame_(norm, "I")) { 00128 00129 /* Find norm1(A). */ 00130 00131 if (*n == 1) { 00132 anorm = abs(d__[1]); 00133 } else { 00134 /* Computing MAX */ 00135 d__2 = abs(d__[1]) + z_abs(&e[1]), d__3 = z_abs(&e[*n - 1]) + ( 00136 d__1 = d__[*n], abs(d__1)); 00137 anorm = max(d__2,d__3); 00138 i__1 = *n - 1; 00139 for (i__ = 2; i__ <= i__1; ++i__) { 00140 /* Computing MAX */ 00141 d__2 = anorm, d__3 = (d__1 = d__[i__], abs(d__1)) + z_abs(&e[ 00142 i__]) + z_abs(&e[i__ - 1]); 00143 anorm = max(d__2,d__3); 00144 /* L20: */ 00145 } 00146 } 00147 } else if (lsame_(norm, "F") || lsame_(norm, "E")) { 00148 00149 /* Find normF(A). */ 00150 00151 scale = 0.; 00152 sum = 1.; 00153 if (*n > 1) { 00154 i__1 = *n - 1; 00155 zlassq_(&i__1, &e[1], &c__1, &scale, &sum); 00156 sum *= 2; 00157 } 00158 dlassq_(n, &d__[1], &c__1, &scale, &sum); 00159 anorm = scale * sqrt(sum); 00160 } 00161 00162 ret_val = anorm; 00163 return ret_val; 00164 00165 /* End of ZLANHT */ 00166 00167 } /* zlanht_ */