00001 /* zlag2c.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Subroutine */ int zlag2c_(integer *m, integer *n, doublecomplex *a, 00017 integer *lda, complex *sa, integer *ldsa, integer *info) 00018 { 00019 /* System generated locals */ 00020 integer sa_dim1, sa_offset, a_dim1, a_offset, i__1, i__2, i__3, i__4; 00021 00022 /* Builtin functions */ 00023 double d_imag(doublecomplex *); 00024 00025 /* Local variables */ 00026 integer i__, j; 00027 doublereal rmax; 00028 extern doublereal slamch_(char *); 00029 00030 00031 /* -- LAPACK PROTOTYPE auxiliary routine (version 3.1.2) -- */ 00032 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00033 /* August 2007 */ 00034 00035 /* .. */ 00036 /* .. Scalar Arguments .. */ 00037 /* .. */ 00038 /* .. Array Arguments .. */ 00039 /* .. */ 00040 00041 /* Purpose */ 00042 /* ======= */ 00043 00044 /* ZLAG2C converts a COMPLEX*16 matrix, SA, to a COMPLEX matrix, A. */ 00045 00046 /* RMAX is the overflow for the SINGLE PRECISION arithmetic */ 00047 /* ZLAG2C checks that all the entries of A are between -RMAX and */ 00048 /* RMAX. If not the convertion is aborted and a flag is raised. */ 00049 00050 /* This is an auxiliary routine so there is no argument checking. */ 00051 00052 /* Arguments */ 00053 /* ========= */ 00054 00055 /* M (input) INTEGER */ 00056 /* The number of lines of the matrix A. M >= 0. */ 00057 00058 /* N (input) INTEGER */ 00059 /* The number of columns of the matrix A. N >= 0. */ 00060 00061 /* A (input) COMPLEX*16 array, dimension (LDA,N) */ 00062 /* On entry, the M-by-N coefficient matrix A. */ 00063 00064 /* LDA (input) INTEGER */ 00065 /* The leading dimension of the array A. LDA >= max(1,M). */ 00066 00067 /* SA (output) COMPLEX array, dimension (LDSA,N) */ 00068 /* On exit, if INFO=0, the M-by-N coefficient matrix SA; if */ 00069 /* INFO>0, the content of SA is unspecified. */ 00070 00071 /* LDSA (input) INTEGER */ 00072 /* The leading dimension of the array SA. LDSA >= max(1,M). */ 00073 00074 /* INFO (output) INTEGER */ 00075 /* = 0: successful exit. */ 00076 /* = 1: an entry of the matrix A is greater than the SINGLE */ 00077 /* PRECISION overflow threshold, in this case, the content */ 00078 /* of SA in exit is unspecified. */ 00079 00080 /* ========= */ 00081 00082 /* .. Local Scalars .. */ 00083 /* .. */ 00084 /* .. Intrinsic Functions .. */ 00085 /* .. */ 00086 /* .. External Functions .. */ 00087 /* .. */ 00088 /* .. Executable Statements .. */ 00089 00090 /* Parameter adjustments */ 00091 a_dim1 = *lda; 00092 a_offset = 1 + a_dim1; 00093 a -= a_offset; 00094 sa_dim1 = *ldsa; 00095 sa_offset = 1 + sa_dim1; 00096 sa -= sa_offset; 00097 00098 /* Function Body */ 00099 rmax = slamch_("O"); 00100 i__1 = *n; 00101 for (j = 1; j <= i__1; ++j) { 00102 i__2 = *m; 00103 for (i__ = 1; i__ <= i__2; ++i__) { 00104 i__3 = i__ + j * a_dim1; 00105 i__4 = i__ + j * a_dim1; 00106 if (a[i__3].r < -rmax || a[i__4].r > rmax || d_imag(&a[i__ + j * 00107 a_dim1]) < -rmax || d_imag(&a[i__ + j * a_dim1]) > rmax) { 00108 *info = 1; 00109 goto L30; 00110 } 00111 i__3 = i__ + j * sa_dim1; 00112 i__4 = i__ + j * a_dim1; 00113 sa[i__3].r = a[i__4].r, sa[i__3].i = a[i__4].i; 00114 /* L10: */ 00115 } 00116 /* L20: */ 00117 } 00118 *info = 0; 00119 L30: 00120 return 0; 00121 00122 /* End of ZLAG2C */ 00123 00124 } /* zlag2c_ */