00001 /* zlaed7.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static integer c__2 = 2; 00019 static integer c__1 = 1; 00020 static integer c_n1 = -1; 00021 00022 /* Subroutine */ int zlaed7_(integer *n, integer *cutpnt, integer *qsiz, 00023 integer *tlvls, integer *curlvl, integer *curpbm, doublereal *d__, 00024 doublecomplex *q, integer *ldq, doublereal *rho, integer *indxq, 00025 doublereal *qstore, integer *qptr, integer *prmptr, integer *perm, 00026 integer *givptr, integer *givcol, doublereal *givnum, doublecomplex * 00027 work, doublereal *rwork, integer *iwork, integer *info) 00028 { 00029 /* System generated locals */ 00030 integer q_dim1, q_offset, i__1, i__2; 00031 00032 /* Builtin functions */ 00033 integer pow_ii(integer *, integer *); 00034 00035 /* Local variables */ 00036 integer i__, k, n1, n2, iq, iw, iz, ptr, indx, curr, indxc, indxp; 00037 extern /* Subroutine */ int dlaed9_(integer *, integer *, integer *, 00038 integer *, doublereal *, doublereal *, integer *, doublereal *, 00039 doublereal *, doublereal *, doublereal *, integer *, integer *), 00040 zlaed8_(integer *, integer *, integer *, doublecomplex *, integer 00041 *, doublereal *, doublereal *, integer *, doublereal *, 00042 doublereal *, doublecomplex *, integer *, doublereal *, integer *, 00043 integer *, integer *, integer *, integer *, integer *, 00044 doublereal *, integer *), dlaeda_(integer *, integer *, integer *, 00045 integer *, integer *, integer *, integer *, integer *, 00046 doublereal *, doublereal *, integer *, doublereal *, doublereal *, 00047 integer *); 00048 integer idlmda; 00049 extern /* Subroutine */ int dlamrg_(integer *, integer *, doublereal *, 00050 integer *, integer *, integer *), xerbla_(char *, integer *), zlacrm_(integer *, integer *, doublecomplex *, integer *, 00051 doublereal *, integer *, doublecomplex *, integer *, doublereal * 00052 ); 00053 integer coltyp; 00054 00055 00056 /* -- LAPACK routine (version 3.2) -- */ 00057 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00058 /* November 2006 */ 00059 00060 /* .. Scalar Arguments .. */ 00061 /* .. */ 00062 /* .. Array Arguments .. */ 00063 /* .. */ 00064 00065 /* Purpose */ 00066 /* ======= */ 00067 00068 /* ZLAED7 computes the updated eigensystem of a diagonal */ 00069 /* matrix after modification by a rank-one symmetric matrix. This */ 00070 /* routine is used only for the eigenproblem which requires all */ 00071 /* eigenvalues and optionally eigenvectors of a dense or banded */ 00072 /* Hermitian matrix that has been reduced to tridiagonal form. */ 00073 00074 /* T = Q(in) ( D(in) + RHO * Z*Z' ) Q'(in) = Q(out) * D(out) * Q'(out) */ 00075 00076 /* where Z = Q'u, u is a vector of length N with ones in the */ 00077 /* CUTPNT and CUTPNT + 1 th elements and zeros elsewhere. */ 00078 00079 /* The eigenvectors of the original matrix are stored in Q, and the */ 00080 /* eigenvalues are in D. The algorithm consists of three stages: */ 00081 00082 /* The first stage consists of deflating the size of the problem */ 00083 /* when there are multiple eigenvalues or if there is a zero in */ 00084 /* the Z vector. For each such occurence the dimension of the */ 00085 /* secular equation problem is reduced by one. This stage is */ 00086 /* performed by the routine DLAED2. */ 00087 00088 /* The second stage consists of calculating the updated */ 00089 /* eigenvalues. This is done by finding the roots of the secular */ 00090 /* equation via the routine DLAED4 (as called by SLAED3). */ 00091 /* This routine also calculates the eigenvectors of the current */ 00092 /* problem. */ 00093 00094 /* The final stage consists of computing the updated eigenvectors */ 00095 /* directly using the updated eigenvalues. The eigenvectors for */ 00096 /* the current problem are multiplied with the eigenvectors from */ 00097 /* the overall problem. */ 00098 00099 /* Arguments */ 00100 /* ========= */ 00101 00102 /* N (input) INTEGER */ 00103 /* The dimension of the symmetric tridiagonal matrix. N >= 0. */ 00104 00105 /* CUTPNT (input) INTEGER */ 00106 /* Contains the location of the last eigenvalue in the leading */ 00107 /* sub-matrix. min(1,N) <= CUTPNT <= N. */ 00108 00109 /* QSIZ (input) INTEGER */ 00110 /* The dimension of the unitary matrix used to reduce */ 00111 /* the full matrix to tridiagonal form. QSIZ >= N. */ 00112 00113 /* TLVLS (input) INTEGER */ 00114 /* The total number of merging levels in the overall divide and */ 00115 /* conquer tree. */ 00116 00117 /* CURLVL (input) INTEGER */ 00118 /* The current level in the overall merge routine, */ 00119 /* 0 <= curlvl <= tlvls. */ 00120 00121 /* CURPBM (input) INTEGER */ 00122 /* The current problem in the current level in the overall */ 00123 /* merge routine (counting from upper left to lower right). */ 00124 00125 /* D (input/output) DOUBLE PRECISION array, dimension (N) */ 00126 /* On entry, the eigenvalues of the rank-1-perturbed matrix. */ 00127 /* On exit, the eigenvalues of the repaired matrix. */ 00128 00129 /* Q (input/output) COMPLEX*16 array, dimension (LDQ,N) */ 00130 /* On entry, the eigenvectors of the rank-1-perturbed matrix. */ 00131 /* On exit, the eigenvectors of the repaired tridiagonal matrix. */ 00132 00133 /* LDQ (input) INTEGER */ 00134 /* The leading dimension of the array Q. LDQ >= max(1,N). */ 00135 00136 /* RHO (input) DOUBLE PRECISION */ 00137 /* Contains the subdiagonal element used to create the rank-1 */ 00138 /* modification. */ 00139 00140 /* INDXQ (output) INTEGER array, dimension (N) */ 00141 /* This contains the permutation which will reintegrate the */ 00142 /* subproblem just solved back into sorted order, */ 00143 /* ie. D( INDXQ( I = 1, N ) ) will be in ascending order. */ 00144 00145 /* IWORK (workspace) INTEGER array, dimension (4*N) */ 00146 00147 /* RWORK (workspace) DOUBLE PRECISION array, */ 00148 /* dimension (3*N+2*QSIZ*N) */ 00149 00150 /* WORK (workspace) COMPLEX*16 array, dimension (QSIZ*N) */ 00151 00152 /* QSTORE (input/output) DOUBLE PRECISION array, dimension (N**2+1) */ 00153 /* Stores eigenvectors of submatrices encountered during */ 00154 /* divide and conquer, packed together. QPTR points to */ 00155 /* beginning of the submatrices. */ 00156 00157 /* QPTR (input/output) INTEGER array, dimension (N+2) */ 00158 /* List of indices pointing to beginning of submatrices stored */ 00159 /* in QSTORE. The submatrices are numbered starting at the */ 00160 /* bottom left of the divide and conquer tree, from left to */ 00161 /* right and bottom to top. */ 00162 00163 /* PRMPTR (input) INTEGER array, dimension (N lg N) */ 00164 /* Contains a list of pointers which indicate where in PERM a */ 00165 /* level's permutation is stored. PRMPTR(i+1) - PRMPTR(i) */ 00166 /* indicates the size of the permutation and also the size of */ 00167 /* the full, non-deflated problem. */ 00168 00169 /* PERM (input) INTEGER array, dimension (N lg N) */ 00170 /* Contains the permutations (from deflation and sorting) to be */ 00171 /* applied to each eigenblock. */ 00172 00173 /* GIVPTR (input) INTEGER array, dimension (N lg N) */ 00174 /* Contains a list of pointers which indicate where in GIVCOL a */ 00175 /* level's Givens rotations are stored. GIVPTR(i+1) - GIVPTR(i) */ 00176 /* indicates the number of Givens rotations. */ 00177 00178 /* GIVCOL (input) INTEGER array, dimension (2, N lg N) */ 00179 /* Each pair of numbers indicates a pair of columns to take place */ 00180 /* in a Givens rotation. */ 00181 00182 /* GIVNUM (input) DOUBLE PRECISION array, dimension (2, N lg N) */ 00183 /* Each number indicates the S value to be used in the */ 00184 /* corresponding Givens rotation. */ 00185 00186 /* INFO (output) INTEGER */ 00187 /* = 0: successful exit. */ 00188 /* < 0: if INFO = -i, the i-th argument had an illegal value. */ 00189 /* > 0: if INFO = 1, an eigenvalue did not converge */ 00190 00191 /* ===================================================================== */ 00192 00193 /* .. Local Scalars .. */ 00194 /* .. */ 00195 /* .. External Subroutines .. */ 00196 /* .. */ 00197 /* .. Intrinsic Functions .. */ 00198 /* .. */ 00199 /* .. Executable Statements .. */ 00200 00201 /* Test the input parameters. */ 00202 00203 /* Parameter adjustments */ 00204 --d__; 00205 q_dim1 = *ldq; 00206 q_offset = 1 + q_dim1; 00207 q -= q_offset; 00208 --indxq; 00209 --qstore; 00210 --qptr; 00211 --prmptr; 00212 --perm; 00213 --givptr; 00214 givcol -= 3; 00215 givnum -= 3; 00216 --work; 00217 --rwork; 00218 --iwork; 00219 00220 /* Function Body */ 00221 *info = 0; 00222 00223 /* IF( ICOMPQ.LT.0 .OR. ICOMPQ.GT.1 ) THEN */ 00224 /* INFO = -1 */ 00225 /* ELSE IF( N.LT.0 ) THEN */ 00226 if (*n < 0) { 00227 *info = -1; 00228 } else if (min(1,*n) > *cutpnt || *n < *cutpnt) { 00229 *info = -2; 00230 } else if (*qsiz < *n) { 00231 *info = -3; 00232 } else if (*ldq < max(1,*n)) { 00233 *info = -9; 00234 } 00235 if (*info != 0) { 00236 i__1 = -(*info); 00237 xerbla_("ZLAED7", &i__1); 00238 return 0; 00239 } 00240 00241 /* Quick return if possible */ 00242 00243 if (*n == 0) { 00244 return 0; 00245 } 00246 00247 /* The following values are for bookkeeping purposes only. They are */ 00248 /* integer pointers which indicate the portion of the workspace */ 00249 /* used by a particular array in DLAED2 and SLAED3. */ 00250 00251 iz = 1; 00252 idlmda = iz + *n; 00253 iw = idlmda + *n; 00254 iq = iw + *n; 00255 00256 indx = 1; 00257 indxc = indx + *n; 00258 coltyp = indxc + *n; 00259 indxp = coltyp + *n; 00260 00261 /* Form the z-vector which consists of the last row of Q_1 and the */ 00262 /* first row of Q_2. */ 00263 00264 ptr = pow_ii(&c__2, tlvls) + 1; 00265 i__1 = *curlvl - 1; 00266 for (i__ = 1; i__ <= i__1; ++i__) { 00267 i__2 = *tlvls - i__; 00268 ptr += pow_ii(&c__2, &i__2); 00269 /* L10: */ 00270 } 00271 curr = ptr + *curpbm; 00272 dlaeda_(n, tlvls, curlvl, curpbm, &prmptr[1], &perm[1], &givptr[1], & 00273 givcol[3], &givnum[3], &qstore[1], &qptr[1], &rwork[iz], &rwork[ 00274 iz + *n], info); 00275 00276 /* When solving the final problem, we no longer need the stored data, */ 00277 /* so we will overwrite the data from this level onto the previously */ 00278 /* used storage space. */ 00279 00280 if (*curlvl == *tlvls) { 00281 qptr[curr] = 1; 00282 prmptr[curr] = 1; 00283 givptr[curr] = 1; 00284 } 00285 00286 /* Sort and Deflate eigenvalues. */ 00287 00288 zlaed8_(&k, n, qsiz, &q[q_offset], ldq, &d__[1], rho, cutpnt, &rwork[iz], 00289 &rwork[idlmda], &work[1], qsiz, &rwork[iw], &iwork[indxp], &iwork[ 00290 indx], &indxq[1], &perm[prmptr[curr]], &givptr[curr + 1], &givcol[ 00291 (givptr[curr] << 1) + 1], &givnum[(givptr[curr] << 1) + 1], info); 00292 prmptr[curr + 1] = prmptr[curr] + *n; 00293 givptr[curr + 1] += givptr[curr]; 00294 00295 /* Solve Secular Equation. */ 00296 00297 if (k != 0) { 00298 dlaed9_(&k, &c__1, &k, n, &d__[1], &rwork[iq], &k, rho, &rwork[idlmda] 00299 , &rwork[iw], &qstore[qptr[curr]], &k, info); 00300 zlacrm_(qsiz, &k, &work[1], qsiz, &qstore[qptr[curr]], &k, &q[ 00301 q_offset], ldq, &rwork[iq]); 00302 /* Computing 2nd power */ 00303 i__1 = k; 00304 qptr[curr + 1] = qptr[curr] + i__1 * i__1; 00305 if (*info != 0) { 00306 return 0; 00307 } 00308 00309 /* Prepare the INDXQ sorting premutation. */ 00310 00311 n1 = k; 00312 n2 = *n - k; 00313 dlamrg_(&n1, &n2, &d__[1], &c__1, &c_n1, &indxq[1]); 00314 } else { 00315 qptr[curr + 1] = qptr[curr]; 00316 i__1 = *n; 00317 for (i__ = 1; i__ <= i__1; ++i__) { 00318 indxq[i__] = i__; 00319 /* L20: */ 00320 } 00321 } 00322 00323 return 0; 00324 00325 /* End of ZLAED7 */ 00326 00327 } /* zlaed7_ */