zlacpy.c
Go to the documentation of this file.
00001 /* zlacpy.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Subroutine */ int zlacpy_(char *uplo, integer *m, integer *n, 
00017         doublecomplex *a, integer *lda, doublecomplex *b, integer *ldb)
00018 {
00019     /* System generated locals */
00020     integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3, i__4;
00021 
00022     /* Local variables */
00023     integer i__, j;
00024     extern logical lsame_(char *, char *);
00025 
00026 
00027 /*  -- LAPACK auxiliary routine (version 3.2) -- */
00028 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00029 /*     November 2006 */
00030 
00031 /*     .. Scalar Arguments .. */
00032 /*     .. */
00033 /*     .. Array Arguments .. */
00034 /*     .. */
00035 
00036 /*  Purpose */
00037 /*  ======= */
00038 
00039 /*  ZLACPY copies all or part of a two-dimensional matrix A to another */
00040 /*  matrix B. */
00041 
00042 /*  Arguments */
00043 /*  ========= */
00044 
00045 /*  UPLO    (input) CHARACTER*1 */
00046 /*          Specifies the part of the matrix A to be copied to B. */
00047 /*          = 'U':      Upper triangular part */
00048 /*          = 'L':      Lower triangular part */
00049 /*          Otherwise:  All of the matrix A */
00050 
00051 /*  M       (input) INTEGER */
00052 /*          The number of rows of the matrix A.  M >= 0. */
00053 
00054 /*  N       (input) INTEGER */
00055 /*          The number of columns of the matrix A.  N >= 0. */
00056 
00057 /*  A       (input) COMPLEX*16 array, dimension (LDA,N) */
00058 /*          The m by n matrix A.  If UPLO = 'U', only the upper trapezium */
00059 /*          is accessed; if UPLO = 'L', only the lower trapezium is */
00060 /*          accessed. */
00061 
00062 /*  LDA     (input) INTEGER */
00063 /*          The leading dimension of the array A.  LDA >= max(1,M). */
00064 
00065 /*  B       (output) COMPLEX*16 array, dimension (LDB,N) */
00066 /*          On exit, B = A in the locations specified by UPLO. */
00067 
00068 /*  LDB     (input) INTEGER */
00069 /*          The leading dimension of the array B.  LDB >= max(1,M). */
00070 
00071 /*  ===================================================================== */
00072 
00073 /*     .. Local Scalars .. */
00074 /*     .. */
00075 /*     .. External Functions .. */
00076 /*     .. */
00077 /*     .. Intrinsic Functions .. */
00078 /*     .. */
00079 /*     .. Executable Statements .. */
00080 
00081     /* Parameter adjustments */
00082     a_dim1 = *lda;
00083     a_offset = 1 + a_dim1;
00084     a -= a_offset;
00085     b_dim1 = *ldb;
00086     b_offset = 1 + b_dim1;
00087     b -= b_offset;
00088 
00089     /* Function Body */
00090     if (lsame_(uplo, "U")) {
00091         i__1 = *n;
00092         for (j = 1; j <= i__1; ++j) {
00093             i__2 = min(j,*m);
00094             for (i__ = 1; i__ <= i__2; ++i__) {
00095                 i__3 = i__ + j * b_dim1;
00096                 i__4 = i__ + j * a_dim1;
00097                 b[i__3].r = a[i__4].r, b[i__3].i = a[i__4].i;
00098 /* L10: */
00099             }
00100 /* L20: */
00101         }
00102 
00103     } else if (lsame_(uplo, "L")) {
00104         i__1 = *n;
00105         for (j = 1; j <= i__1; ++j) {
00106             i__2 = *m;
00107             for (i__ = j; i__ <= i__2; ++i__) {
00108                 i__3 = i__ + j * b_dim1;
00109                 i__4 = i__ + j * a_dim1;
00110                 b[i__3].r = a[i__4].r, b[i__3].i = a[i__4].i;
00111 /* L30: */
00112             }
00113 /* L40: */
00114         }
00115 
00116     } else {
00117         i__1 = *n;
00118         for (j = 1; j <= i__1; ++j) {
00119             i__2 = *m;
00120             for (i__ = 1; i__ <= i__2; ++i__) {
00121                 i__3 = i__ + j * b_dim1;
00122                 i__4 = i__ + j * a_dim1;
00123                 b[i__3].r = a[i__4].r, b[i__3].i = a[i__4].i;
00124 /* L50: */
00125             }
00126 /* L60: */
00127         }
00128     }
00129 
00130     return 0;
00131 
00132 /*     End of ZLACPY */
00133 
00134 } /* zlacpy_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:56:40