zlabrd.c
Go to the documentation of this file.
00001 /* zlabrd.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Table of constant values */
00017 
00018 static doublecomplex c_b1 = {0.,0.};
00019 static doublecomplex c_b2 = {1.,0.};
00020 static integer c__1 = 1;
00021 
00022 /* Subroutine */ int zlabrd_(integer *m, integer *n, integer *nb, 
00023         doublecomplex *a, integer *lda, doublereal *d__, doublereal *e, 
00024         doublecomplex *tauq, doublecomplex *taup, doublecomplex *x, integer *
00025         ldx, doublecomplex *y, integer *ldy)
00026 {
00027     /* System generated locals */
00028     integer a_dim1, a_offset, x_dim1, x_offset, y_dim1, y_offset, i__1, i__2, 
00029             i__3;
00030     doublecomplex z__1;
00031 
00032     /* Local variables */
00033     integer i__;
00034     doublecomplex alpha;
00035     extern /* Subroutine */ int zscal_(integer *, doublecomplex *, 
00036             doublecomplex *, integer *), zgemv_(char *, integer *, integer *, 
00037             doublecomplex *, doublecomplex *, integer *, doublecomplex *, 
00038             integer *, doublecomplex *, doublecomplex *, integer *), 
00039             zlarfg_(integer *, doublecomplex *, doublecomplex *, integer *, 
00040             doublecomplex *), zlacgv_(integer *, doublecomplex *, integer *);
00041 
00042 
00043 /*  -- LAPACK auxiliary routine (version 3.2) -- */
00044 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00045 /*     November 2006 */
00046 
00047 /*     .. Scalar Arguments .. */
00048 /*     .. */
00049 /*     .. Array Arguments .. */
00050 /*     .. */
00051 
00052 /*  Purpose */
00053 /*  ======= */
00054 
00055 /*  ZLABRD reduces the first NB rows and columns of a complex general */
00056 /*  m by n matrix A to upper or lower real bidiagonal form by a unitary */
00057 /*  transformation Q' * A * P, and returns the matrices X and Y which */
00058 /*  are needed to apply the transformation to the unreduced part of A. */
00059 
00060 /*  If m >= n, A is reduced to upper bidiagonal form; if m < n, to lower */
00061 /*  bidiagonal form. */
00062 
00063 /*  This is an auxiliary routine called by ZGEBRD */
00064 
00065 /*  Arguments */
00066 /*  ========= */
00067 
00068 /*  M       (input) INTEGER */
00069 /*          The number of rows in the matrix A. */
00070 
00071 /*  N       (input) INTEGER */
00072 /*          The number of columns in the matrix A. */
00073 
00074 /*  NB      (input) INTEGER */
00075 /*          The number of leading rows and columns of A to be reduced. */
00076 
00077 /*  A       (input/output) COMPLEX*16 array, dimension (LDA,N) */
00078 /*          On entry, the m by n general matrix to be reduced. */
00079 /*          On exit, the first NB rows and columns of the matrix are */
00080 /*          overwritten; the rest of the array is unchanged. */
00081 /*          If m >= n, elements on and below the diagonal in the first NB */
00082 /*            columns, with the array TAUQ, represent the unitary */
00083 /*            matrix Q as a product of elementary reflectors; and */
00084 /*            elements above the diagonal in the first NB rows, with the */
00085 /*            array TAUP, represent the unitary matrix P as a product */
00086 /*            of elementary reflectors. */
00087 /*          If m < n, elements below the diagonal in the first NB */
00088 /*            columns, with the array TAUQ, represent the unitary */
00089 /*            matrix Q as a product of elementary reflectors, and */
00090 /*            elements on and above the diagonal in the first NB rows, */
00091 /*            with the array TAUP, represent the unitary matrix P as */
00092 /*            a product of elementary reflectors. */
00093 /*          See Further Details. */
00094 
00095 /*  LDA     (input) INTEGER */
00096 /*          The leading dimension of the array A.  LDA >= max(1,M). */
00097 
00098 /*  D       (output) DOUBLE PRECISION array, dimension (NB) */
00099 /*          The diagonal elements of the first NB rows and columns of */
00100 /*          the reduced matrix.  D(i) = A(i,i). */
00101 
00102 /*  E       (output) DOUBLE PRECISION array, dimension (NB) */
00103 /*          The off-diagonal elements of the first NB rows and columns of */
00104 /*          the reduced matrix. */
00105 
00106 /*  TAUQ    (output) COMPLEX*16 array dimension (NB) */
00107 /*          The scalar factors of the elementary reflectors which */
00108 /*          represent the unitary matrix Q. See Further Details. */
00109 
00110 /*  TAUP    (output) COMPLEX*16 array, dimension (NB) */
00111 /*          The scalar factors of the elementary reflectors which */
00112 /*          represent the unitary matrix P. See Further Details. */
00113 
00114 /*  X       (output) COMPLEX*16 array, dimension (LDX,NB) */
00115 /*          The m-by-nb matrix X required to update the unreduced part */
00116 /*          of A. */
00117 
00118 /*  LDX     (input) INTEGER */
00119 /*          The leading dimension of the array X. LDX >= max(1,M). */
00120 
00121 /*  Y       (output) COMPLEX*16 array, dimension (LDY,NB) */
00122 /*          The n-by-nb matrix Y required to update the unreduced part */
00123 /*          of A. */
00124 
00125 /*  LDY     (input) INTEGER */
00126 /*          The leading dimension of the array Y. LDY >= max(1,N). */
00127 
00128 /*  Further Details */
00129 /*  =============== */
00130 
00131 /*  The matrices Q and P are represented as products of elementary */
00132 /*  reflectors: */
00133 
00134 /*     Q = H(1) H(2) . . . H(nb)  and  P = G(1) G(2) . . . G(nb) */
00135 
00136 /*  Each H(i) and G(i) has the form: */
00137 
00138 /*     H(i) = I - tauq * v * v'  and G(i) = I - taup * u * u' */
00139 
00140 /*  where tauq and taup are complex scalars, and v and u are complex */
00141 /*  vectors. */
00142 
00143 /*  If m >= n, v(1:i-1) = 0, v(i) = 1, and v(i:m) is stored on exit in */
00144 /*  A(i:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+1:n) is stored on exit in */
00145 /*  A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i). */
00146 
00147 /*  If m < n, v(1:i) = 0, v(i+1) = 1, and v(i+1:m) is stored on exit in */
00148 /*  A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i:n) is stored on exit in */
00149 /*  A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i). */
00150 
00151 /*  The elements of the vectors v and u together form the m-by-nb matrix */
00152 /*  V and the nb-by-n matrix U' which are needed, with X and Y, to apply */
00153 /*  the transformation to the unreduced part of the matrix, using a block */
00154 /*  update of the form:  A := A - V*Y' - X*U'. */
00155 
00156 /*  The contents of A on exit are illustrated by the following examples */
00157 /*  with nb = 2: */
00158 
00159 /*  m = 6 and n = 5 (m > n):          m = 5 and n = 6 (m < n): */
00160 
00161 /*    (  1   1   u1  u1  u1 )           (  1   u1  u1  u1  u1  u1 ) */
00162 /*    (  v1  1   1   u2  u2 )           (  1   1   u2  u2  u2  u2 ) */
00163 /*    (  v1  v2  a   a   a  )           (  v1  1   a   a   a   a  ) */
00164 /*    (  v1  v2  a   a   a  )           (  v1  v2  a   a   a   a  ) */
00165 /*    (  v1  v2  a   a   a  )           (  v1  v2  a   a   a   a  ) */
00166 /*    (  v1  v2  a   a   a  ) */
00167 
00168 /*  where a denotes an element of the original matrix which is unchanged, */
00169 /*  vi denotes an element of the vector defining H(i), and ui an element */
00170 /*  of the vector defining G(i). */
00171 
00172 /*  ===================================================================== */
00173 
00174 /*     .. Parameters .. */
00175 /*     .. */
00176 /*     .. Local Scalars .. */
00177 /*     .. */
00178 /*     .. External Subroutines .. */
00179 /*     .. */
00180 /*     .. Intrinsic Functions .. */
00181 /*     .. */
00182 /*     .. Executable Statements .. */
00183 
00184 /*     Quick return if possible */
00185 
00186     /* Parameter adjustments */
00187     a_dim1 = *lda;
00188     a_offset = 1 + a_dim1;
00189     a -= a_offset;
00190     --d__;
00191     --e;
00192     --tauq;
00193     --taup;
00194     x_dim1 = *ldx;
00195     x_offset = 1 + x_dim1;
00196     x -= x_offset;
00197     y_dim1 = *ldy;
00198     y_offset = 1 + y_dim1;
00199     y -= y_offset;
00200 
00201     /* Function Body */
00202     if (*m <= 0 || *n <= 0) {
00203         return 0;
00204     }
00205 
00206     if (*m >= *n) {
00207 
00208 /*        Reduce to upper bidiagonal form */
00209 
00210         i__1 = *nb;
00211         for (i__ = 1; i__ <= i__1; ++i__) {
00212 
00213 /*           Update A(i:m,i) */
00214 
00215             i__2 = i__ - 1;
00216             zlacgv_(&i__2, &y[i__ + y_dim1], ldy);
00217             i__2 = *m - i__ + 1;
00218             i__3 = i__ - 1;
00219             z__1.r = -1., z__1.i = -0.;
00220             zgemv_("No transpose", &i__2, &i__3, &z__1, &a[i__ + a_dim1], lda, 
00221                      &y[i__ + y_dim1], ldy, &c_b2, &a[i__ + i__ * a_dim1], &
00222                     c__1);
00223             i__2 = i__ - 1;
00224             zlacgv_(&i__2, &y[i__ + y_dim1], ldy);
00225             i__2 = *m - i__ + 1;
00226             i__3 = i__ - 1;
00227             z__1.r = -1., z__1.i = -0.;
00228             zgemv_("No transpose", &i__2, &i__3, &z__1, &x[i__ + x_dim1], ldx, 
00229                      &a[i__ * a_dim1 + 1], &c__1, &c_b2, &a[i__ + i__ * 
00230                     a_dim1], &c__1);
00231 
00232 /*           Generate reflection Q(i) to annihilate A(i+1:m,i) */
00233 
00234             i__2 = i__ + i__ * a_dim1;
00235             alpha.r = a[i__2].r, alpha.i = a[i__2].i;
00236             i__2 = *m - i__ + 1;
00237 /* Computing MIN */
00238             i__3 = i__ + 1;
00239             zlarfg_(&i__2, &alpha, &a[min(i__3, *m)+ i__ * a_dim1], &c__1, &
00240                     tauq[i__]);
00241             i__2 = i__;
00242             d__[i__2] = alpha.r;
00243             if (i__ < *n) {
00244                 i__2 = i__ + i__ * a_dim1;
00245                 a[i__2].r = 1., a[i__2].i = 0.;
00246 
00247 /*              Compute Y(i+1:n,i) */
00248 
00249                 i__2 = *m - i__ + 1;
00250                 i__3 = *n - i__;
00251                 zgemv_("Conjugate transpose", &i__2, &i__3, &c_b2, &a[i__ + (
00252                         i__ + 1) * a_dim1], lda, &a[i__ + i__ * a_dim1], &
00253                         c__1, &c_b1, &y[i__ + 1 + i__ * y_dim1], &c__1);
00254                 i__2 = *m - i__ + 1;
00255                 i__3 = i__ - 1;
00256                 zgemv_("Conjugate transpose", &i__2, &i__3, &c_b2, &a[i__ + 
00257                         a_dim1], lda, &a[i__ + i__ * a_dim1], &c__1, &c_b1, &
00258                         y[i__ * y_dim1 + 1], &c__1);
00259                 i__2 = *n - i__;
00260                 i__3 = i__ - 1;
00261                 z__1.r = -1., z__1.i = -0.;
00262                 zgemv_("No transpose", &i__2, &i__3, &z__1, &y[i__ + 1 + 
00263                         y_dim1], ldy, &y[i__ * y_dim1 + 1], &c__1, &c_b2, &y[
00264                         i__ + 1 + i__ * y_dim1], &c__1);
00265                 i__2 = *m - i__ + 1;
00266                 i__3 = i__ - 1;
00267                 zgemv_("Conjugate transpose", &i__2, &i__3, &c_b2, &x[i__ + 
00268                         x_dim1], ldx, &a[i__ + i__ * a_dim1], &c__1, &c_b1, &
00269                         y[i__ * y_dim1 + 1], &c__1);
00270                 i__2 = i__ - 1;
00271                 i__3 = *n - i__;
00272                 z__1.r = -1., z__1.i = -0.;
00273                 zgemv_("Conjugate transpose", &i__2, &i__3, &z__1, &a[(i__ + 
00274                         1) * a_dim1 + 1], lda, &y[i__ * y_dim1 + 1], &c__1, &
00275                         c_b2, &y[i__ + 1 + i__ * y_dim1], &c__1);
00276                 i__2 = *n - i__;
00277                 zscal_(&i__2, &tauq[i__], &y[i__ + 1 + i__ * y_dim1], &c__1);
00278 
00279 /*              Update A(i,i+1:n) */
00280 
00281                 i__2 = *n - i__;
00282                 zlacgv_(&i__2, &a[i__ + (i__ + 1) * a_dim1], lda);
00283                 zlacgv_(&i__, &a[i__ + a_dim1], lda);
00284                 i__2 = *n - i__;
00285                 z__1.r = -1., z__1.i = -0.;
00286                 zgemv_("No transpose", &i__2, &i__, &z__1, &y[i__ + 1 + 
00287                         y_dim1], ldy, &a[i__ + a_dim1], lda, &c_b2, &a[i__ + (
00288                         i__ + 1) * a_dim1], lda);
00289                 zlacgv_(&i__, &a[i__ + a_dim1], lda);
00290                 i__2 = i__ - 1;
00291                 zlacgv_(&i__2, &x[i__ + x_dim1], ldx);
00292                 i__2 = i__ - 1;
00293                 i__3 = *n - i__;
00294                 z__1.r = -1., z__1.i = -0.;
00295                 zgemv_("Conjugate transpose", &i__2, &i__3, &z__1, &a[(i__ + 
00296                         1) * a_dim1 + 1], lda, &x[i__ + x_dim1], ldx, &c_b2, &
00297                         a[i__ + (i__ + 1) * a_dim1], lda);
00298                 i__2 = i__ - 1;
00299                 zlacgv_(&i__2, &x[i__ + x_dim1], ldx);
00300 
00301 /*              Generate reflection P(i) to annihilate A(i,i+2:n) */
00302 
00303                 i__2 = i__ + (i__ + 1) * a_dim1;
00304                 alpha.r = a[i__2].r, alpha.i = a[i__2].i;
00305                 i__2 = *n - i__;
00306 /* Computing MIN */
00307                 i__3 = i__ + 2;
00308                 zlarfg_(&i__2, &alpha, &a[i__ + min(i__3, *n)* a_dim1], lda, &
00309                         taup[i__]);
00310                 i__2 = i__;
00311                 e[i__2] = alpha.r;
00312                 i__2 = i__ + (i__ + 1) * a_dim1;
00313                 a[i__2].r = 1., a[i__2].i = 0.;
00314 
00315 /*              Compute X(i+1:m,i) */
00316 
00317                 i__2 = *m - i__;
00318                 i__3 = *n - i__;
00319                 zgemv_("No transpose", &i__2, &i__3, &c_b2, &a[i__ + 1 + (i__ 
00320                         + 1) * a_dim1], lda, &a[i__ + (i__ + 1) * a_dim1], 
00321                         lda, &c_b1, &x[i__ + 1 + i__ * x_dim1], &c__1);
00322                 i__2 = *n - i__;
00323                 zgemv_("Conjugate transpose", &i__2, &i__, &c_b2, &y[i__ + 1 
00324                         + y_dim1], ldy, &a[i__ + (i__ + 1) * a_dim1], lda, &
00325                         c_b1, &x[i__ * x_dim1 + 1], &c__1);
00326                 i__2 = *m - i__;
00327                 z__1.r = -1., z__1.i = -0.;
00328                 zgemv_("No transpose", &i__2, &i__, &z__1, &a[i__ + 1 + 
00329                         a_dim1], lda, &x[i__ * x_dim1 + 1], &c__1, &c_b2, &x[
00330                         i__ + 1 + i__ * x_dim1], &c__1);
00331                 i__2 = i__ - 1;
00332                 i__3 = *n - i__;
00333                 zgemv_("No transpose", &i__2, &i__3, &c_b2, &a[(i__ + 1) * 
00334                         a_dim1 + 1], lda, &a[i__ + (i__ + 1) * a_dim1], lda, &
00335                         c_b1, &x[i__ * x_dim1 + 1], &c__1);
00336                 i__2 = *m - i__;
00337                 i__3 = i__ - 1;
00338                 z__1.r = -1., z__1.i = -0.;
00339                 zgemv_("No transpose", &i__2, &i__3, &z__1, &x[i__ + 1 + 
00340                         x_dim1], ldx, &x[i__ * x_dim1 + 1], &c__1, &c_b2, &x[
00341                         i__ + 1 + i__ * x_dim1], &c__1);
00342                 i__2 = *m - i__;
00343                 zscal_(&i__2, &taup[i__], &x[i__ + 1 + i__ * x_dim1], &c__1);
00344                 i__2 = *n - i__;
00345                 zlacgv_(&i__2, &a[i__ + (i__ + 1) * a_dim1], lda);
00346             }
00347 /* L10: */
00348         }
00349     } else {
00350 
00351 /*        Reduce to lower bidiagonal form */
00352 
00353         i__1 = *nb;
00354         for (i__ = 1; i__ <= i__1; ++i__) {
00355 
00356 /*           Update A(i,i:n) */
00357 
00358             i__2 = *n - i__ + 1;
00359             zlacgv_(&i__2, &a[i__ + i__ * a_dim1], lda);
00360             i__2 = i__ - 1;
00361             zlacgv_(&i__2, &a[i__ + a_dim1], lda);
00362             i__2 = *n - i__ + 1;
00363             i__3 = i__ - 1;
00364             z__1.r = -1., z__1.i = -0.;
00365             zgemv_("No transpose", &i__2, &i__3, &z__1, &y[i__ + y_dim1], ldy, 
00366                      &a[i__ + a_dim1], lda, &c_b2, &a[i__ + i__ * a_dim1], 
00367                     lda);
00368             i__2 = i__ - 1;
00369             zlacgv_(&i__2, &a[i__ + a_dim1], lda);
00370             i__2 = i__ - 1;
00371             zlacgv_(&i__2, &x[i__ + x_dim1], ldx);
00372             i__2 = i__ - 1;
00373             i__3 = *n - i__ + 1;
00374             z__1.r = -1., z__1.i = -0.;
00375             zgemv_("Conjugate transpose", &i__2, &i__3, &z__1, &a[i__ * 
00376                     a_dim1 + 1], lda, &x[i__ + x_dim1], ldx, &c_b2, &a[i__ + 
00377                     i__ * a_dim1], lda);
00378             i__2 = i__ - 1;
00379             zlacgv_(&i__2, &x[i__ + x_dim1], ldx);
00380 
00381 /*           Generate reflection P(i) to annihilate A(i,i+1:n) */
00382 
00383             i__2 = i__ + i__ * a_dim1;
00384             alpha.r = a[i__2].r, alpha.i = a[i__2].i;
00385             i__2 = *n - i__ + 1;
00386 /* Computing MIN */
00387             i__3 = i__ + 1;
00388             zlarfg_(&i__2, &alpha, &a[i__ + min(i__3, *n)* a_dim1], lda, &
00389                     taup[i__]);
00390             i__2 = i__;
00391             d__[i__2] = alpha.r;
00392             if (i__ < *m) {
00393                 i__2 = i__ + i__ * a_dim1;
00394                 a[i__2].r = 1., a[i__2].i = 0.;
00395 
00396 /*              Compute X(i+1:m,i) */
00397 
00398                 i__2 = *m - i__;
00399                 i__3 = *n - i__ + 1;
00400                 zgemv_("No transpose", &i__2, &i__3, &c_b2, &a[i__ + 1 + i__ *
00401                          a_dim1], lda, &a[i__ + i__ * a_dim1], lda, &c_b1, &x[
00402                         i__ + 1 + i__ * x_dim1], &c__1);
00403                 i__2 = *n - i__ + 1;
00404                 i__3 = i__ - 1;
00405                 zgemv_("Conjugate transpose", &i__2, &i__3, &c_b2, &y[i__ + 
00406                         y_dim1], ldy, &a[i__ + i__ * a_dim1], lda, &c_b1, &x[
00407                         i__ * x_dim1 + 1], &c__1);
00408                 i__2 = *m - i__;
00409                 i__3 = i__ - 1;
00410                 z__1.r = -1., z__1.i = -0.;
00411                 zgemv_("No transpose", &i__2, &i__3, &z__1, &a[i__ + 1 + 
00412                         a_dim1], lda, &x[i__ * x_dim1 + 1], &c__1, &c_b2, &x[
00413                         i__ + 1 + i__ * x_dim1], &c__1);
00414                 i__2 = i__ - 1;
00415                 i__3 = *n - i__ + 1;
00416                 zgemv_("No transpose", &i__2, &i__3, &c_b2, &a[i__ * a_dim1 + 
00417                         1], lda, &a[i__ + i__ * a_dim1], lda, &c_b1, &x[i__ * 
00418                         x_dim1 + 1], &c__1);
00419                 i__2 = *m - i__;
00420                 i__3 = i__ - 1;
00421                 z__1.r = -1., z__1.i = -0.;
00422                 zgemv_("No transpose", &i__2, &i__3, &z__1, &x[i__ + 1 + 
00423                         x_dim1], ldx, &x[i__ * x_dim1 + 1], &c__1, &c_b2, &x[
00424                         i__ + 1 + i__ * x_dim1], &c__1);
00425                 i__2 = *m - i__;
00426                 zscal_(&i__2, &taup[i__], &x[i__ + 1 + i__ * x_dim1], &c__1);
00427                 i__2 = *n - i__ + 1;
00428                 zlacgv_(&i__2, &a[i__ + i__ * a_dim1], lda);
00429 
00430 /*              Update A(i+1:m,i) */
00431 
00432                 i__2 = i__ - 1;
00433                 zlacgv_(&i__2, &y[i__ + y_dim1], ldy);
00434                 i__2 = *m - i__;
00435                 i__3 = i__ - 1;
00436                 z__1.r = -1., z__1.i = -0.;
00437                 zgemv_("No transpose", &i__2, &i__3, &z__1, &a[i__ + 1 + 
00438                         a_dim1], lda, &y[i__ + y_dim1], ldy, &c_b2, &a[i__ + 
00439                         1 + i__ * a_dim1], &c__1);
00440                 i__2 = i__ - 1;
00441                 zlacgv_(&i__2, &y[i__ + y_dim1], ldy);
00442                 i__2 = *m - i__;
00443                 z__1.r = -1., z__1.i = -0.;
00444                 zgemv_("No transpose", &i__2, &i__, &z__1, &x[i__ + 1 + 
00445                         x_dim1], ldx, &a[i__ * a_dim1 + 1], &c__1, &c_b2, &a[
00446                         i__ + 1 + i__ * a_dim1], &c__1);
00447 
00448 /*              Generate reflection Q(i) to annihilate A(i+2:m,i) */
00449 
00450                 i__2 = i__ + 1 + i__ * a_dim1;
00451                 alpha.r = a[i__2].r, alpha.i = a[i__2].i;
00452                 i__2 = *m - i__;
00453 /* Computing MIN */
00454                 i__3 = i__ + 2;
00455                 zlarfg_(&i__2, &alpha, &a[min(i__3, *m)+ i__ * a_dim1], &c__1, 
00456                          &tauq[i__]);
00457                 i__2 = i__;
00458                 e[i__2] = alpha.r;
00459                 i__2 = i__ + 1 + i__ * a_dim1;
00460                 a[i__2].r = 1., a[i__2].i = 0.;
00461 
00462 /*              Compute Y(i+1:n,i) */
00463 
00464                 i__2 = *m - i__;
00465                 i__3 = *n - i__;
00466                 zgemv_("Conjugate transpose", &i__2, &i__3, &c_b2, &a[i__ + 1 
00467                         + (i__ + 1) * a_dim1], lda, &a[i__ + 1 + i__ * a_dim1]
00468 , &c__1, &c_b1, &y[i__ + 1 + i__ * y_dim1], &c__1);
00469                 i__2 = *m - i__;
00470                 i__3 = i__ - 1;
00471                 zgemv_("Conjugate transpose", &i__2, &i__3, &c_b2, &a[i__ + 1 
00472                         + a_dim1], lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &
00473                         c_b1, &y[i__ * y_dim1 + 1], &c__1);
00474                 i__2 = *n - i__;
00475                 i__3 = i__ - 1;
00476                 z__1.r = -1., z__1.i = -0.;
00477                 zgemv_("No transpose", &i__2, &i__3, &z__1, &y[i__ + 1 + 
00478                         y_dim1], ldy, &y[i__ * y_dim1 + 1], &c__1, &c_b2, &y[
00479                         i__ + 1 + i__ * y_dim1], &c__1);
00480                 i__2 = *m - i__;
00481                 zgemv_("Conjugate transpose", &i__2, &i__, &c_b2, &x[i__ + 1 
00482                         + x_dim1], ldx, &a[i__ + 1 + i__ * a_dim1], &c__1, &
00483                         c_b1, &y[i__ * y_dim1 + 1], &c__1);
00484                 i__2 = *n - i__;
00485                 z__1.r = -1., z__1.i = -0.;
00486                 zgemv_("Conjugate transpose", &i__, &i__2, &z__1, &a[(i__ + 1)
00487                          * a_dim1 + 1], lda, &y[i__ * y_dim1 + 1], &c__1, &
00488                         c_b2, &y[i__ + 1 + i__ * y_dim1], &c__1);
00489                 i__2 = *n - i__;
00490                 zscal_(&i__2, &tauq[i__], &y[i__ + 1 + i__ * y_dim1], &c__1);
00491             } else {
00492                 i__2 = *n - i__ + 1;
00493                 zlacgv_(&i__2, &a[i__ + i__ * a_dim1], lda);
00494             }
00495 /* L20: */
00496         }
00497     }
00498     return 0;
00499 
00500 /*     End of ZLABRD */
00501 
00502 } /* zlabrd_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:56:40