00001 /* zhpgv.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static integer c__1 = 1; 00019 00020 /* Subroutine */ int zhpgv_(integer *itype, char *jobz, char *uplo, integer * 00021 n, doublecomplex *ap, doublecomplex *bp, doublereal *w, doublecomplex 00022 *z__, integer *ldz, doublecomplex *work, doublereal *rwork, integer * 00023 info) 00024 { 00025 /* System generated locals */ 00026 integer z_dim1, z_offset, i__1; 00027 00028 /* Local variables */ 00029 integer j, neig; 00030 extern logical lsame_(char *, char *); 00031 char trans[1]; 00032 logical upper; 00033 extern /* Subroutine */ int zhpev_(char *, char *, integer *, 00034 doublecomplex *, doublereal *, doublecomplex *, integer *, 00035 doublecomplex *, doublereal *, integer *); 00036 logical wantz; 00037 extern /* Subroutine */ int ztpmv_(char *, char *, char *, integer *, 00038 doublecomplex *, doublecomplex *, integer *), ztpsv_(char *, char *, char *, integer *, doublecomplex * 00039 , doublecomplex *, integer *), xerbla_( 00040 char *, integer *), zhpgst_(integer *, char *, integer *, 00041 doublecomplex *, doublecomplex *, integer *), zpptrf_( 00042 char *, integer *, doublecomplex *, integer *); 00043 00044 00045 /* -- LAPACK driver routine (version 3.2) -- */ 00046 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00047 /* November 2006 */ 00048 00049 /* .. Scalar Arguments .. */ 00050 /* .. */ 00051 /* .. Array Arguments .. */ 00052 /* .. */ 00053 00054 /* Purpose */ 00055 /* ======= */ 00056 00057 /* ZHPGV computes all the eigenvalues and, optionally, the eigenvectors */ 00058 /* of a complex generalized Hermitian-definite eigenproblem, of the form */ 00059 /* A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. */ 00060 /* Here A and B are assumed to be Hermitian, stored in packed format, */ 00061 /* and B is also positive definite. */ 00062 00063 /* Arguments */ 00064 /* ========= */ 00065 00066 /* ITYPE (input) INTEGER */ 00067 /* Specifies the problem type to be solved: */ 00068 /* = 1: A*x = (lambda)*B*x */ 00069 /* = 2: A*B*x = (lambda)*x */ 00070 /* = 3: B*A*x = (lambda)*x */ 00071 00072 /* JOBZ (input) CHARACTER*1 */ 00073 /* = 'N': Compute eigenvalues only; */ 00074 /* = 'V': Compute eigenvalues and eigenvectors. */ 00075 00076 /* UPLO (input) CHARACTER*1 */ 00077 /* = 'U': Upper triangles of A and B are stored; */ 00078 /* = 'L': Lower triangles of A and B are stored. */ 00079 00080 /* N (input) INTEGER */ 00081 /* The order of the matrices A and B. N >= 0. */ 00082 00083 /* AP (input/output) COMPLEX*16 array, dimension (N*(N+1)/2) */ 00084 /* On entry, the upper or lower triangle of the Hermitian matrix */ 00085 /* A, packed columnwise in a linear array. The j-th column of A */ 00086 /* is stored in the array AP as follows: */ 00087 /* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */ 00088 /* if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. */ 00089 00090 /* On exit, the contents of AP are destroyed. */ 00091 00092 /* BP (input/output) COMPLEX*16 array, dimension (N*(N+1)/2) */ 00093 /* On entry, the upper or lower triangle of the Hermitian matrix */ 00094 /* B, packed columnwise in a linear array. The j-th column of B */ 00095 /* is stored in the array BP as follows: */ 00096 /* if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j; */ 00097 /* if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n. */ 00098 00099 /* On exit, the triangular factor U or L from the Cholesky */ 00100 /* factorization B = U**H*U or B = L*L**H, in the same storage */ 00101 /* format as B. */ 00102 00103 /* W (output) DOUBLE PRECISION array, dimension (N) */ 00104 /* If INFO = 0, the eigenvalues in ascending order. */ 00105 00106 /* Z (output) COMPLEX*16 array, dimension (LDZ, N) */ 00107 /* If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of */ 00108 /* eigenvectors. The eigenvectors are normalized as follows: */ 00109 /* if ITYPE = 1 or 2, Z**H*B*Z = I; */ 00110 /* if ITYPE = 3, Z**H*inv(B)*Z = I. */ 00111 /* If JOBZ = 'N', then Z is not referenced. */ 00112 00113 /* LDZ (input) INTEGER */ 00114 /* The leading dimension of the array Z. LDZ >= 1, and if */ 00115 /* JOBZ = 'V', LDZ >= max(1,N). */ 00116 00117 /* WORK (workspace) COMPLEX*16 array, dimension (max(1, 2*N-1)) */ 00118 00119 /* RWORK (workspace) DOUBLE PRECISION array, dimension (max(1, 3*N-2)) */ 00120 00121 /* INFO (output) INTEGER */ 00122 /* = 0: successful exit */ 00123 /* < 0: if INFO = -i, the i-th argument had an illegal value */ 00124 /* > 0: ZPPTRF or ZHPEV returned an error code: */ 00125 /* <= N: if INFO = i, ZHPEV failed to converge; */ 00126 /* i off-diagonal elements of an intermediate */ 00127 /* tridiagonal form did not convergeto zero; */ 00128 /* > N: if INFO = N + i, for 1 <= i <= n, then the leading */ 00129 /* minor of order i of B is not positive definite. */ 00130 /* The factorization of B could not be completed and */ 00131 /* no eigenvalues or eigenvectors were computed. */ 00132 00133 /* ===================================================================== */ 00134 00135 /* .. Local Scalars .. */ 00136 /* .. */ 00137 /* .. External Functions .. */ 00138 /* .. */ 00139 /* .. External Subroutines .. */ 00140 /* .. */ 00141 /* .. Executable Statements .. */ 00142 00143 /* Test the input parameters. */ 00144 00145 /* Parameter adjustments */ 00146 --ap; 00147 --bp; 00148 --w; 00149 z_dim1 = *ldz; 00150 z_offset = 1 + z_dim1; 00151 z__ -= z_offset; 00152 --work; 00153 --rwork; 00154 00155 /* Function Body */ 00156 wantz = lsame_(jobz, "V"); 00157 upper = lsame_(uplo, "U"); 00158 00159 *info = 0; 00160 if (*itype < 1 || *itype > 3) { 00161 *info = -1; 00162 } else if (! (wantz || lsame_(jobz, "N"))) { 00163 *info = -2; 00164 } else if (! (upper || lsame_(uplo, "L"))) { 00165 *info = -3; 00166 } else if (*n < 0) { 00167 *info = -4; 00168 } else if (*ldz < 1 || wantz && *ldz < *n) { 00169 *info = -9; 00170 } 00171 if (*info != 0) { 00172 i__1 = -(*info); 00173 xerbla_("ZHPGV ", &i__1); 00174 return 0; 00175 } 00176 00177 /* Quick return if possible */ 00178 00179 if (*n == 0) { 00180 return 0; 00181 } 00182 00183 /* Form a Cholesky factorization of B. */ 00184 00185 zpptrf_(uplo, n, &bp[1], info); 00186 if (*info != 0) { 00187 *info = *n + *info; 00188 return 0; 00189 } 00190 00191 /* Transform problem to standard eigenvalue problem and solve. */ 00192 00193 zhpgst_(itype, uplo, n, &ap[1], &bp[1], info); 00194 zhpev_(jobz, uplo, n, &ap[1], &w[1], &z__[z_offset], ldz, &work[1], & 00195 rwork[1], info); 00196 00197 if (wantz) { 00198 00199 /* Backtransform eigenvectors to the original problem. */ 00200 00201 neig = *n; 00202 if (*info > 0) { 00203 neig = *info - 1; 00204 } 00205 if (*itype == 1 || *itype == 2) { 00206 00207 /* For A*x=(lambda)*B*x and A*B*x=(lambda)*x; */ 00208 /* backtransform eigenvectors: x = inv(L)'*y or inv(U)*y */ 00209 00210 if (upper) { 00211 *(unsigned char *)trans = 'N'; 00212 } else { 00213 *(unsigned char *)trans = 'C'; 00214 } 00215 00216 i__1 = neig; 00217 for (j = 1; j <= i__1; ++j) { 00218 ztpsv_(uplo, trans, "Non-unit", n, &bp[1], &z__[j * z_dim1 + 00219 1], &c__1); 00220 /* L10: */ 00221 } 00222 00223 } else if (*itype == 3) { 00224 00225 /* For B*A*x=(lambda)*x; */ 00226 /* backtransform eigenvectors: x = L*y or U'*y */ 00227 00228 if (upper) { 00229 *(unsigned char *)trans = 'C'; 00230 } else { 00231 *(unsigned char *)trans = 'N'; 00232 } 00233 00234 i__1 = neig; 00235 for (j = 1; j <= i__1; ++j) { 00236 ztpmv_(uplo, trans, "Non-unit", n, &bp[1], &z__[j * z_dim1 + 00237 1], &c__1); 00238 /* L20: */ 00239 } 00240 } 00241 } 00242 return 0; 00243 00244 /* End of ZHPGV */ 00245 00246 } /* zhpgv_ */