00001 /* zhesvxx.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Subroutine */ int zhesvxx_(char *fact, char *uplo, integer *n, integer * 00017 nrhs, doublecomplex *a, integer *lda, doublecomplex *af, integer * 00018 ldaf, integer *ipiv, char *equed, doublereal *s, doublecomplex *b, 00019 integer *ldb, doublecomplex *x, integer *ldx, doublereal *rcond, 00020 doublereal *rpvgrw, doublereal *berr, integer *n_err_bnds__, 00021 doublereal *err_bnds_norm__, doublereal *err_bnds_comp__, integer * 00022 nparams, doublereal *params, doublecomplex *work, doublereal *rwork, 00023 integer *info) 00024 { 00025 /* System generated locals */ 00026 integer a_dim1, a_offset, af_dim1, af_offset, b_dim1, b_offset, x_dim1, 00027 x_offset, err_bnds_norm_dim1, err_bnds_norm_offset, 00028 err_bnds_comp_dim1, err_bnds_comp_offset, i__1; 00029 doublereal d__1, d__2; 00030 00031 /* Local variables */ 00032 integer j; 00033 doublereal amax, smin, smax; 00034 extern doublereal zla_herpvgrw__(char *, integer *, integer *, 00035 doublecomplex *, integer *, doublecomplex *, integer *, integer *, 00036 doublereal *, ftnlen); 00037 extern logical lsame_(char *, char *); 00038 doublereal scond; 00039 logical equil, rcequ; 00040 extern doublereal dlamch_(char *); 00041 logical nofact; 00042 extern /* Subroutine */ int xerbla_(char *, integer *); 00043 doublereal bignum; 00044 extern /* Subroutine */ int zlaqhe_(char *, integer *, doublecomplex *, 00045 integer *, doublereal *, doublereal *, doublereal *, char *); 00046 integer infequ; 00047 extern /* Subroutine */ int zhetrf_(char *, integer *, doublecomplex *, 00048 integer *, integer *, doublecomplex *, integer *, integer *), zlacpy_(char *, integer *, integer *, doublecomplex *, 00049 integer *, doublecomplex *, integer *); 00050 doublereal smlnum; 00051 extern /* Subroutine */ int zhetrs_(char *, integer *, integer *, 00052 doublecomplex *, integer *, integer *, doublecomplex *, integer *, 00053 integer *), zlascl2_(integer *, integer *, doublereal *, 00054 doublecomplex *, integer *), zheequb_(char *, integer *, 00055 doublecomplex *, integer *, doublereal *, doublereal *, 00056 doublereal *, doublecomplex *, integer *), zherfsx_(char * 00057 , char *, integer *, integer *, doublecomplex *, integer *, 00058 doublecomplex *, integer *, integer *, doublereal *, 00059 doublecomplex *, integer *, doublecomplex *, integer *, 00060 doublereal *, doublereal *, integer *, doublereal *, doublereal *, 00061 integer *, doublereal *, doublecomplex *, doublereal *, integer * 00062 ); 00063 00064 00065 /* -- LAPACK driver routine (version 3.2.1) -- */ 00066 /* -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- */ 00067 /* -- Jason Riedy of Univ. of California Berkeley. -- */ 00068 /* -- April 2009 -- */ 00069 00070 /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ 00071 /* -- Univ. of California Berkeley and NAG Ltd. -- */ 00072 00073 /* .. */ 00074 /* .. Scalar Arguments .. */ 00075 /* .. */ 00076 /* .. Array Arguments .. */ 00077 /* .. */ 00078 00079 /* Purpose */ 00080 /* ======= */ 00081 00082 /* ZHESVXX uses the diagonal pivoting factorization to compute the */ 00083 /* solution to a complex*16 system of linear equations A * X = B, where */ 00084 /* A is an N-by-N symmetric matrix and X and B are N-by-NRHS */ 00085 /* matrices. */ 00086 00087 /* If requested, both normwise and maximum componentwise error bounds */ 00088 /* are returned. ZHESVXX will return a solution with a tiny */ 00089 /* guaranteed error (O(eps) where eps is the working machine */ 00090 /* precision) unless the matrix is very ill-conditioned, in which */ 00091 /* case a warning is returned. Relevant condition numbers also are */ 00092 /* calculated and returned. */ 00093 00094 /* ZHESVXX accepts user-provided factorizations and equilibration */ 00095 /* factors; see the definitions of the FACT and EQUED options. */ 00096 /* Solving with refinement and using a factorization from a previous */ 00097 /* ZHESVXX call will also produce a solution with either O(eps) */ 00098 /* errors or warnings, but we cannot make that claim for general */ 00099 /* user-provided factorizations and equilibration factors if they */ 00100 /* differ from what ZHESVXX would itself produce. */ 00101 00102 /* Description */ 00103 /* =========== */ 00104 00105 /* The following steps are performed: */ 00106 00107 /* 1. If FACT = 'E', double precision scaling factors are computed to equilibrate */ 00108 /* the system: */ 00109 00110 /* diag(S)*A*diag(S) *inv(diag(S))*X = diag(S)*B */ 00111 00112 /* Whether or not the system will be equilibrated depends on the */ 00113 /* scaling of the matrix A, but if equilibration is used, A is */ 00114 /* overwritten by diag(S)*A*diag(S) and B by diag(S)*B. */ 00115 00116 /* 2. If FACT = 'N' or 'E', the LU decomposition is used to factor */ 00117 /* the matrix A (after equilibration if FACT = 'E') as */ 00118 00119 /* A = U * D * U**T, if UPLO = 'U', or */ 00120 /* A = L * D * L**T, if UPLO = 'L', */ 00121 00122 /* where U (or L) is a product of permutation and unit upper (lower) */ 00123 /* triangular matrices, and D is symmetric and block diagonal with */ 00124 /* 1-by-1 and 2-by-2 diagonal blocks. */ 00125 00126 /* 3. If some D(i,i)=0, so that D is exactly singular, then the */ 00127 /* routine returns with INFO = i. Otherwise, the factored form of A */ 00128 /* is used to estimate the condition number of the matrix A (see */ 00129 /* argument RCOND). If the reciprocal of the condition number is */ 00130 /* less than machine precision, the routine still goes on to solve */ 00131 /* for X and compute error bounds as described below. */ 00132 00133 /* 4. The system of equations is solved for X using the factored form */ 00134 /* of A. */ 00135 00136 /* 5. By default (unless PARAMS(LA_LINRX_ITREF_I) is set to zero), */ 00137 /* the routine will use iterative refinement to try to get a small */ 00138 /* error and error bounds. Refinement calculates the residual to at */ 00139 /* least twice the working precision. */ 00140 00141 /* 6. If equilibration was used, the matrix X is premultiplied by */ 00142 /* diag(R) so that it solves the original system before */ 00143 /* equilibration. */ 00144 00145 /* Arguments */ 00146 /* ========= */ 00147 00148 /* Some optional parameters are bundled in the PARAMS array. These */ 00149 /* settings determine how refinement is performed, but often the */ 00150 /* defaults are acceptable. If the defaults are acceptable, users */ 00151 /* can pass NPARAMS = 0 which prevents the source code from accessing */ 00152 /* the PARAMS argument. */ 00153 00154 /* FACT (input) CHARACTER*1 */ 00155 /* Specifies whether or not the factored form of the matrix A is */ 00156 /* supplied on entry, and if not, whether the matrix A should be */ 00157 /* equilibrated before it is factored. */ 00158 /* = 'F': On entry, AF and IPIV contain the factored form of A. */ 00159 /* If EQUED is not 'N', the matrix A has been */ 00160 /* equilibrated with scaling factors given by S. */ 00161 /* A, AF, and IPIV are not modified. */ 00162 /* = 'N': The matrix A will be copied to AF and factored. */ 00163 /* = 'E': The matrix A will be equilibrated if necessary, then */ 00164 /* copied to AF and factored. */ 00165 00166 /* N (input) INTEGER */ 00167 /* The number of linear equations, i.e., the order of the */ 00168 /* matrix A. N >= 0. */ 00169 00170 /* NRHS (input) INTEGER */ 00171 /* The number of right hand sides, i.e., the number of columns */ 00172 /* of the matrices B and X. NRHS >= 0. */ 00173 00174 /* A (input/output) COMPLEX*16 array, dimension (LDA,N) */ 00175 /* The symmetric matrix A. If UPLO = 'U', the leading N-by-N */ 00176 /* upper triangular part of A contains the upper triangular */ 00177 /* part of the matrix A, and the strictly lower triangular */ 00178 /* part of A is not referenced. If UPLO = 'L', the leading */ 00179 /* N-by-N lower triangular part of A contains the lower */ 00180 /* triangular part of the matrix A, and the strictly upper */ 00181 /* triangular part of A is not referenced. */ 00182 00183 /* On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by */ 00184 /* diag(S)*A*diag(S). */ 00185 00186 /* LDA (input) INTEGER */ 00187 /* The leading dimension of the array A. LDA >= max(1,N). */ 00188 00189 /* AF (input or output) COMPLEX*16 array, dimension (LDAF,N) */ 00190 /* If FACT = 'F', then AF is an input argument and on entry */ 00191 /* contains the block diagonal matrix D and the multipliers */ 00192 /* used to obtain the factor U or L from the factorization A = */ 00193 /* U*D*U**T or A = L*D*L**T as computed by DSYTRF. */ 00194 00195 /* If FACT = 'N', then AF is an output argument and on exit */ 00196 /* returns the block diagonal matrix D and the multipliers */ 00197 /* used to obtain the factor U or L from the factorization A = */ 00198 /* U*D*U**T or A = L*D*L**T. */ 00199 00200 /* LDAF (input) INTEGER */ 00201 /* The leading dimension of the array AF. LDAF >= max(1,N). */ 00202 00203 /* IPIV (input or output) INTEGER array, dimension (N) */ 00204 /* If FACT = 'F', then IPIV is an input argument and on entry */ 00205 /* contains details of the interchanges and the block */ 00206 /* structure of D, as determined by ZHETRF. If IPIV(k) > 0, */ 00207 /* then rows and columns k and IPIV(k) were interchanged and */ 00208 /* D(k,k) is a 1-by-1 diagonal block. If UPLO = 'U' and */ 00209 /* IPIV(k) = IPIV(k-1) < 0, then rows and columns k-1 and */ 00210 /* -IPIV(k) were interchanged and D(k-1:k,k-1:k) is a 2-by-2 */ 00211 /* diagonal block. If UPLO = 'L' and IPIV(k) = IPIV(k+1) < 0, */ 00212 /* then rows and columns k+1 and -IPIV(k) were interchanged */ 00213 /* and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. */ 00214 00215 /* If FACT = 'N', then IPIV is an output argument and on exit */ 00216 /* contains details of the interchanges and the block */ 00217 /* structure of D, as determined by ZHETRF. */ 00218 00219 /* EQUED (input or output) CHARACTER*1 */ 00220 /* Specifies the form of equilibration that was done. */ 00221 /* = 'N': No equilibration (always true if FACT = 'N'). */ 00222 /* = 'Y': Both row and column equilibration, i.e., A has been */ 00223 /* replaced by diag(S) * A * diag(S). */ 00224 /* EQUED is an input argument if FACT = 'F'; otherwise, it is an */ 00225 /* output argument. */ 00226 00227 /* S (input or output) DOUBLE PRECISION array, dimension (N) */ 00228 /* The scale factors for A. If EQUED = 'Y', A is multiplied on */ 00229 /* the left and right by diag(S). S is an input argument if FACT = */ 00230 /* 'F'; otherwise, S is an output argument. If FACT = 'F' and EQUED */ 00231 /* = 'Y', each element of S must be positive. If S is output, each */ 00232 /* element of S is a power of the radix. If S is input, each element */ 00233 /* of S should be a power of the radix to ensure a reliable solution */ 00234 /* and error estimates. Scaling by powers of the radix does not cause */ 00235 /* rounding errors unless the result underflows or overflows. */ 00236 /* Rounding errors during scaling lead to refining with a matrix that */ 00237 /* is not equivalent to the input matrix, producing error estimates */ 00238 /* that may not be reliable. */ 00239 00240 /* B (input/output) COMPLEX*16 array, dimension (LDB,NRHS) */ 00241 /* On entry, the N-by-NRHS right hand side matrix B. */ 00242 /* On exit, */ 00243 /* if EQUED = 'N', B is not modified; */ 00244 /* if EQUED = 'Y', B is overwritten by diag(S)*B; */ 00245 00246 /* LDB (input) INTEGER */ 00247 /* The leading dimension of the array B. LDB >= max(1,N). */ 00248 00249 /* X (output) COMPLEX*16 array, dimension (LDX,NRHS) */ 00250 /* If INFO = 0, the N-by-NRHS solution matrix X to the original */ 00251 /* system of equations. Note that A and B are modified on exit if */ 00252 /* EQUED .ne. 'N', and the solution to the equilibrated system is */ 00253 /* inv(diag(S))*X. */ 00254 00255 /* LDX (input) INTEGER */ 00256 /* The leading dimension of the array X. LDX >= max(1,N). */ 00257 00258 /* RCOND (output) DOUBLE PRECISION */ 00259 /* Reciprocal scaled condition number. This is an estimate of the */ 00260 /* reciprocal Skeel condition number of the matrix A after */ 00261 /* equilibration (if done). If this is less than the machine */ 00262 /* precision (in particular, if it is zero), the matrix is singular */ 00263 /* to working precision. Note that the error may still be small even */ 00264 /* if this number is very small and the matrix appears ill- */ 00265 /* conditioned. */ 00266 00267 /* RPVGRW (output) DOUBLE PRECISION */ 00268 /* Reciprocal pivot growth. On exit, this contains the reciprocal */ 00269 /* pivot growth factor norm(A)/norm(U). The "max absolute element" */ 00270 /* norm is used. If this is much less than 1, then the stability of */ 00271 /* the LU factorization of the (equilibrated) matrix A could be poor. */ 00272 /* This also means that the solution X, estimated condition numbers, */ 00273 /* and error bounds could be unreliable. If factorization fails with */ 00274 /* 0<INFO<=N, then this contains the reciprocal pivot growth factor */ 00275 /* for the leading INFO columns of A. */ 00276 00277 /* BERR (output) DOUBLE PRECISION array, dimension (NRHS) */ 00278 /* Componentwise relative backward error. This is the */ 00279 /* componentwise relative backward error of each solution vector X(j) */ 00280 /* (i.e., the smallest relative change in any element of A or B that */ 00281 /* makes X(j) an exact solution). */ 00282 00283 /* N_ERR_BNDS (input) INTEGER */ 00284 /* Number of error bounds to return for each right hand side */ 00285 /* and each type (normwise or componentwise). See ERR_BNDS_NORM and */ 00286 /* ERR_BNDS_COMP below. */ 00287 00288 /* ERR_BNDS_NORM (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS) */ 00289 /* For each right-hand side, this array contains information about */ 00290 /* various error bounds and condition numbers corresponding to the */ 00291 /* normwise relative error, which is defined as follows: */ 00292 00293 /* Normwise relative error in the ith solution vector: */ 00294 /* max_j (abs(XTRUE(j,i) - X(j,i))) */ 00295 /* ------------------------------ */ 00296 /* max_j abs(X(j,i)) */ 00297 00298 /* The array is indexed by the type of error information as described */ 00299 /* below. There currently are up to three pieces of information */ 00300 /* returned. */ 00301 00302 /* The first index in ERR_BNDS_NORM(i,:) corresponds to the ith */ 00303 /* right-hand side. */ 00304 00305 /* The second index in ERR_BNDS_NORM(:,err) contains the following */ 00306 /* three fields: */ 00307 /* err = 1 "Trust/don't trust" boolean. Trust the answer if the */ 00308 /* reciprocal condition number is less than the threshold */ 00309 /* sqrt(n) * dlamch('Epsilon'). */ 00310 00311 /* err = 2 "Guaranteed" error bound: The estimated forward error, */ 00312 /* almost certainly within a factor of 10 of the true error */ 00313 /* so long as the next entry is greater than the threshold */ 00314 /* sqrt(n) * dlamch('Epsilon'). This error bound should only */ 00315 /* be trusted if the previous boolean is true. */ 00316 00317 /* err = 3 Reciprocal condition number: Estimated normwise */ 00318 /* reciprocal condition number. Compared with the threshold */ 00319 /* sqrt(n) * dlamch('Epsilon') to determine if the error */ 00320 /* estimate is "guaranteed". These reciprocal condition */ 00321 /* numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some */ 00322 /* appropriately scaled matrix Z. */ 00323 /* Let Z = S*A, where S scales each row by a power of the */ 00324 /* radix so all absolute row sums of Z are approximately 1. */ 00325 00326 /* See Lapack Working Note 165 for further details and extra */ 00327 /* cautions. */ 00328 00329 /* ERR_BNDS_COMP (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS) */ 00330 /* For each right-hand side, this array contains information about */ 00331 /* various error bounds and condition numbers corresponding to the */ 00332 /* componentwise relative error, which is defined as follows: */ 00333 00334 /* Componentwise relative error in the ith solution vector: */ 00335 /* abs(XTRUE(j,i) - X(j,i)) */ 00336 /* max_j ---------------------- */ 00337 /* abs(X(j,i)) */ 00338 00339 /* The array is indexed by the right-hand side i (on which the */ 00340 /* componentwise relative error depends), and the type of error */ 00341 /* information as described below. There currently are up to three */ 00342 /* pieces of information returned for each right-hand side. If */ 00343 /* componentwise accuracy is not requested (PARAMS(3) = 0.0), then */ 00344 /* ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most */ 00345 /* the first (:,N_ERR_BNDS) entries are returned. */ 00346 00347 /* The first index in ERR_BNDS_COMP(i,:) corresponds to the ith */ 00348 /* right-hand side. */ 00349 00350 /* The second index in ERR_BNDS_COMP(:,err) contains the following */ 00351 /* three fields: */ 00352 /* err = 1 "Trust/don't trust" boolean. Trust the answer if the */ 00353 /* reciprocal condition number is less than the threshold */ 00354 /* sqrt(n) * dlamch('Epsilon'). */ 00355 00356 /* err = 2 "Guaranteed" error bound: The estimated forward error, */ 00357 /* almost certainly within a factor of 10 of the true error */ 00358 /* so long as the next entry is greater than the threshold */ 00359 /* sqrt(n) * dlamch('Epsilon'). This error bound should only */ 00360 /* be trusted if the previous boolean is true. */ 00361 00362 /* err = 3 Reciprocal condition number: Estimated componentwise */ 00363 /* reciprocal condition number. Compared with the threshold */ 00364 /* sqrt(n) * dlamch('Epsilon') to determine if the error */ 00365 /* estimate is "guaranteed". These reciprocal condition */ 00366 /* numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some */ 00367 /* appropriately scaled matrix Z. */ 00368 /* Let Z = S*(A*diag(x)), where x is the solution for the */ 00369 /* current right-hand side and S scales each row of */ 00370 /* A*diag(x) by a power of the radix so all absolute row */ 00371 /* sums of Z are approximately 1. */ 00372 00373 /* See Lapack Working Note 165 for further details and extra */ 00374 /* cautions. */ 00375 00376 /* NPARAMS (input) INTEGER */ 00377 /* Specifies the number of parameters set in PARAMS. If .LE. 0, the */ 00378 /* PARAMS array is never referenced and default values are used. */ 00379 00380 /* PARAMS (input / output) DOUBLE PRECISION array, dimension NPARAMS */ 00381 /* Specifies algorithm parameters. If an entry is .LT. 0.0, then */ 00382 /* that entry will be filled with default value used for that */ 00383 /* parameter. Only positions up to NPARAMS are accessed; defaults */ 00384 /* are used for higher-numbered parameters. */ 00385 00386 /* PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative */ 00387 /* refinement or not. */ 00388 /* Default: 1.0D+0 */ 00389 /* = 0.0 : No refinement is performed, and no error bounds are */ 00390 /* computed. */ 00391 /* = 1.0 : Use the extra-precise refinement algorithm. */ 00392 /* (other values are reserved for future use) */ 00393 00394 /* PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual */ 00395 /* computations allowed for refinement. */ 00396 /* Default: 10 */ 00397 /* Aggressive: Set to 100 to permit convergence using approximate */ 00398 /* factorizations or factorizations other than LU. If */ 00399 /* the factorization uses a technique other than */ 00400 /* Gaussian elimination, the guarantees in */ 00401 /* err_bnds_norm and err_bnds_comp may no longer be */ 00402 /* trustworthy. */ 00403 00404 /* PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code */ 00405 /* will attempt to find a solution with small componentwise */ 00406 /* relative error in the double-precision algorithm. Positive */ 00407 /* is true, 0.0 is false. */ 00408 /* Default: 1.0 (attempt componentwise convergence) */ 00409 00410 /* WORK (workspace) COMPLEX*16 array, dimension (2*N) */ 00411 00412 /* RWORK (workspace) DOUBLE PRECISION array, dimension (2*N) */ 00413 00414 /* INFO (output) INTEGER */ 00415 /* = 0: Successful exit. The solution to every right-hand side is */ 00416 /* guaranteed. */ 00417 /* < 0: If INFO = -i, the i-th argument had an illegal value */ 00418 /* > 0 and <= N: U(INFO,INFO) is exactly zero. The factorization */ 00419 /* has been completed, but the factor U is exactly singular, so */ 00420 /* the solution and error bounds could not be computed. RCOND = 0 */ 00421 /* is returned. */ 00422 /* = N+J: The solution corresponding to the Jth right-hand side is */ 00423 /* not guaranteed. The solutions corresponding to other right- */ 00424 /* hand sides K with K > J may not be guaranteed as well, but */ 00425 /* only the first such right-hand side is reported. If a small */ 00426 /* componentwise error is not requested (PARAMS(3) = 0.0) then */ 00427 /* the Jth right-hand side is the first with a normwise error */ 00428 /* bound that is not guaranteed (the smallest J such */ 00429 /* that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0) */ 00430 /* the Jth right-hand side is the first with either a normwise or */ 00431 /* componentwise error bound that is not guaranteed (the smallest */ 00432 /* J such that either ERR_BNDS_NORM(J,1) = 0.0 or */ 00433 /* ERR_BNDS_COMP(J,1) = 0.0). See the definition of */ 00434 /* ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information */ 00435 /* about all of the right-hand sides check ERR_BNDS_NORM or */ 00436 /* ERR_BNDS_COMP. */ 00437 00438 /* ================================================================== */ 00439 00440 /* .. Parameters .. */ 00441 /* .. */ 00442 /* .. Local Scalars .. */ 00443 /* .. */ 00444 /* .. External Functions .. */ 00445 /* .. */ 00446 /* .. External Subroutines .. */ 00447 /* .. */ 00448 /* .. Intrinsic Functions .. */ 00449 /* .. */ 00450 /* .. Executable Statements .. */ 00451 00452 /* Parameter adjustments */ 00453 err_bnds_comp_dim1 = *nrhs; 00454 err_bnds_comp_offset = 1 + err_bnds_comp_dim1; 00455 err_bnds_comp__ -= err_bnds_comp_offset; 00456 err_bnds_norm_dim1 = *nrhs; 00457 err_bnds_norm_offset = 1 + err_bnds_norm_dim1; 00458 err_bnds_norm__ -= err_bnds_norm_offset; 00459 a_dim1 = *lda; 00460 a_offset = 1 + a_dim1; 00461 a -= a_offset; 00462 af_dim1 = *ldaf; 00463 af_offset = 1 + af_dim1; 00464 af -= af_offset; 00465 --ipiv; 00466 --s; 00467 b_dim1 = *ldb; 00468 b_offset = 1 + b_dim1; 00469 b -= b_offset; 00470 x_dim1 = *ldx; 00471 x_offset = 1 + x_dim1; 00472 x -= x_offset; 00473 --berr; 00474 --params; 00475 --work; 00476 --rwork; 00477 00478 /* Function Body */ 00479 *info = 0; 00480 nofact = lsame_(fact, "N"); 00481 equil = lsame_(fact, "E"); 00482 smlnum = dlamch_("Safe minimum"); 00483 bignum = 1. / smlnum; 00484 if (nofact || equil) { 00485 *(unsigned char *)equed = 'N'; 00486 rcequ = FALSE_; 00487 } else { 00488 rcequ = lsame_(equed, "Y"); 00489 } 00490 00491 /* Default is failure. If an input parameter is wrong or */ 00492 /* factorization fails, make everything look horrible. Only the */ 00493 /* pivot growth is set here, the rest is initialized in ZHERFSX. */ 00494 00495 *rpvgrw = 0.; 00496 00497 /* Test the input parameters. PARAMS is not tested until ZHERFSX. */ 00498 00499 if (! nofact && ! equil && ! lsame_(fact, "F")) { 00500 *info = -1; 00501 } else if (! lsame_(uplo, "U") && ! lsame_(uplo, 00502 "L")) { 00503 *info = -2; 00504 } else if (*n < 0) { 00505 *info = -3; 00506 } else if (*nrhs < 0) { 00507 *info = -4; 00508 } else if (*lda < max(1,*n)) { 00509 *info = -6; 00510 } else if (*ldaf < max(1,*n)) { 00511 *info = -8; 00512 } else if (lsame_(fact, "F") && ! (rcequ || lsame_( 00513 equed, "N"))) { 00514 *info = -9; 00515 } else { 00516 if (rcequ) { 00517 smin = bignum; 00518 smax = 0.; 00519 i__1 = *n; 00520 for (j = 1; j <= i__1; ++j) { 00521 /* Computing MIN */ 00522 d__1 = smin, d__2 = s[j]; 00523 smin = min(d__1,d__2); 00524 /* Computing MAX */ 00525 d__1 = smax, d__2 = s[j]; 00526 smax = max(d__1,d__2); 00527 /* L10: */ 00528 } 00529 if (smin <= 0.) { 00530 *info = -10; 00531 } else if (*n > 0) { 00532 scond = max(smin,smlnum) / min(smax,bignum); 00533 } else { 00534 scond = 1.; 00535 } 00536 } 00537 if (*info == 0) { 00538 if (*ldb < max(1,*n)) { 00539 *info = -12; 00540 } else if (*ldx < max(1,*n)) { 00541 *info = -14; 00542 } 00543 } 00544 } 00545 00546 if (*info != 0) { 00547 i__1 = -(*info); 00548 xerbla_("ZHESVXX", &i__1); 00549 return 0; 00550 } 00551 00552 if (equil) { 00553 00554 /* Compute row and column scalings to equilibrate the matrix A. */ 00555 00556 zheequb_(uplo, n, &a[a_offset], lda, &s[1], &scond, &amax, &work[1], & 00557 infequ); 00558 if (infequ == 0) { 00559 00560 /* Equilibrate the matrix. */ 00561 00562 zlaqhe_(uplo, n, &a[a_offset], lda, &s[1], &scond, &amax, equed); 00563 rcequ = lsame_(equed, "Y"); 00564 } 00565 } 00566 00567 /* Scale the right-hand side. */ 00568 00569 if (rcequ) { 00570 zlascl2_(n, nrhs, &s[1], &b[b_offset], ldb); 00571 } 00572 00573 if (nofact || equil) { 00574 00575 /* Compute the LU factorization of A. */ 00576 00577 zlacpy_(uplo, n, n, &a[a_offset], lda, &af[af_offset], ldaf); 00578 i__1 = max(1,*n) * 5; 00579 zhetrf_(uplo, n, &af[af_offset], ldaf, &ipiv[1], &work[1], &i__1, 00580 info); 00581 00582 /* Return if INFO is non-zero. */ 00583 00584 if (*info > 0) { 00585 00586 /* Pivot in column INFO is exactly 0 */ 00587 /* Compute the reciprocal pivot growth factor of the */ 00588 /* leading rank-deficient INFO columns of A. */ 00589 00590 if (*n > 0) { 00591 *rpvgrw = zla_herpvgrw__(uplo, n, info, &a[a_offset], lda, & 00592 af[af_offset], ldaf, &ipiv[1], &rwork[1], (ftnlen)1); 00593 } 00594 return 0; 00595 } 00596 } 00597 00598 /* Compute the reciprocal pivot growth factor RPVGRW. */ 00599 00600 if (*n > 0) { 00601 *rpvgrw = zla_herpvgrw__(uplo, n, info, &a[a_offset], lda, &af[ 00602 af_offset], ldaf, &ipiv[1], &rwork[1], (ftnlen)1); 00603 } 00604 00605 /* Compute the solution matrix X. */ 00606 00607 zlacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx); 00608 zhetrs_(uplo, n, nrhs, &af[af_offset], ldaf, &ipiv[1], &x[x_offset], ldx, 00609 info); 00610 00611 /* Use iterative refinement to improve the computed solution and */ 00612 /* compute error bounds and backward error estimates for it. */ 00613 00614 zherfsx_(uplo, equed, n, nrhs, &a[a_offset], lda, &af[af_offset], ldaf, & 00615 ipiv[1], &s[1], &b[b_offset], ldb, &x[x_offset], ldx, rcond, & 00616 berr[1], n_err_bnds__, &err_bnds_norm__[err_bnds_norm_offset], & 00617 err_bnds_comp__[err_bnds_comp_offset], nparams, ¶ms[1], &work[ 00618 1], &rwork[1], info); 00619 00620 /* Scale solutions. */ 00621 00622 if (rcequ) { 00623 zlascl2_(n, nrhs, &s[1], &x[x_offset], ldx); 00624 } 00625 00626 return 0; 00627 00628 /* End of ZHESVXX */ 00629 00630 } /* zhesvxx_ */