00001 /* zheevr.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static integer c__10 = 10; 00019 static integer c__1 = 1; 00020 static integer c__2 = 2; 00021 static integer c__3 = 3; 00022 static integer c__4 = 4; 00023 static integer c_n1 = -1; 00024 00025 /* Subroutine */ int zheevr_(char *jobz, char *range, char *uplo, integer *n, 00026 doublecomplex *a, integer *lda, doublereal *vl, doublereal *vu, 00027 integer *il, integer *iu, doublereal *abstol, integer *m, doublereal * 00028 w, doublecomplex *z__, integer *ldz, integer *isuppz, doublecomplex * 00029 work, integer *lwork, doublereal *rwork, integer *lrwork, integer * 00030 iwork, integer *liwork, integer *info) 00031 { 00032 /* System generated locals */ 00033 integer a_dim1, a_offset, z_dim1, z_offset, i__1, i__2; 00034 doublereal d__1, d__2; 00035 00036 /* Builtin functions */ 00037 double sqrt(doublereal); 00038 00039 /* Local variables */ 00040 integer i__, j, nb, jj; 00041 doublereal eps, vll, vuu, tmp1, anrm; 00042 integer imax; 00043 doublereal rmin, rmax; 00044 logical test; 00045 integer itmp1; 00046 extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 00047 integer *); 00048 integer indrd, indre; 00049 doublereal sigma; 00050 extern logical lsame_(char *, char *); 00051 integer iinfo; 00052 char order[1]; 00053 integer indwk; 00054 extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 00055 doublereal *, integer *); 00056 integer lwmin; 00057 logical lower, wantz; 00058 extern /* Subroutine */ int zswap_(integer *, doublecomplex *, integer *, 00059 doublecomplex *, integer *); 00060 extern doublereal dlamch_(char *); 00061 logical alleig, indeig; 00062 integer iscale, ieeeok, indibl, indrdd, indifl, indree; 00063 logical valeig; 00064 doublereal safmin; 00065 extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 00066 integer *, integer *); 00067 extern /* Subroutine */ int xerbla_(char *, integer *), zdscal_( 00068 integer *, doublereal *, doublecomplex *, integer *); 00069 doublereal abstll, bignum; 00070 integer indtau, indisp; 00071 extern /* Subroutine */ int dsterf_(integer *, doublereal *, doublereal *, 00072 integer *); 00073 integer indiwo, indwkn; 00074 extern /* Subroutine */ int dstebz_(char *, char *, integer *, doublereal 00075 *, doublereal *, integer *, integer *, doublereal *, doublereal *, 00076 doublereal *, integer *, integer *, doublereal *, integer *, 00077 integer *, doublereal *, integer *, integer *); 00078 integer indrwk, liwmin; 00079 extern /* Subroutine */ int zhetrd_(char *, integer *, doublecomplex *, 00080 integer *, doublereal *, doublereal *, doublecomplex *, 00081 doublecomplex *, integer *, integer *); 00082 logical tryrac; 00083 integer lrwmin, llwrkn, llwork, nsplit; 00084 doublereal smlnum; 00085 extern /* Subroutine */ int zstein_(integer *, doublereal *, doublereal *, 00086 integer *, doublereal *, integer *, integer *, doublecomplex *, 00087 integer *, doublereal *, integer *, integer *, integer *); 00088 logical lquery; 00089 integer lwkopt; 00090 extern doublereal zlansy_(char *, char *, integer *, doublecomplex *, 00091 integer *, doublereal *); 00092 extern /* Subroutine */ int zstemr_(char *, char *, integer *, doublereal 00093 *, doublereal *, doublereal *, doublereal *, integer *, integer *, 00094 integer *, doublereal *, doublecomplex *, integer *, integer *, 00095 integer *, logical *, doublereal *, integer *, integer *, integer 00096 *, integer *), zunmtr_(char *, char *, char *, 00097 integer *, integer *, doublecomplex *, integer *, doublecomplex *, 00098 doublecomplex *, integer *, doublecomplex *, integer *, integer * 00099 ); 00100 integer llrwork; 00101 00102 00103 /* -- LAPACK driver routine (version 3.2) -- */ 00104 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00105 /* November 2006 */ 00106 00107 /* .. Scalar Arguments .. */ 00108 /* .. */ 00109 /* .. Array Arguments .. */ 00110 /* .. */ 00111 00112 /* Purpose */ 00113 /* ======= */ 00114 00115 /* ZHEEVR computes selected eigenvalues and, optionally, eigenvectors */ 00116 /* of a complex Hermitian matrix A. Eigenvalues and eigenvectors can */ 00117 /* be selected by specifying either a range of values or a range of */ 00118 /* indices for the desired eigenvalues. */ 00119 00120 /* ZHEEVR first reduces the matrix A to tridiagonal form T with a call */ 00121 /* to ZHETRD. Then, whenever possible, ZHEEVR calls ZSTEMR to compute */ 00122 /* eigenspectrum using Relatively Robust Representations. ZSTEMR */ 00123 /* computes eigenvalues by the dqds algorithm, while orthogonal */ 00124 /* eigenvectors are computed from various "good" L D L^T representations */ 00125 /* (also known as Relatively Robust Representations). Gram-Schmidt */ 00126 /* orthogonalization is avoided as far as possible. More specifically, */ 00127 /* the various steps of the algorithm are as follows. */ 00128 00129 /* For each unreduced block (submatrix) of T, */ 00130 /* (a) Compute T - sigma I = L D L^T, so that L and D */ 00131 /* define all the wanted eigenvalues to high relative accuracy. */ 00132 /* This means that small relative changes in the entries of D and L */ 00133 /* cause only small relative changes in the eigenvalues and */ 00134 /* eigenvectors. The standard (unfactored) representation of the */ 00135 /* tridiagonal matrix T does not have this property in general. */ 00136 /* (b) Compute the eigenvalues to suitable accuracy. */ 00137 /* If the eigenvectors are desired, the algorithm attains full */ 00138 /* accuracy of the computed eigenvalues only right before */ 00139 /* the corresponding vectors have to be computed, see steps c) and d). */ 00140 /* (c) For each cluster of close eigenvalues, select a new */ 00141 /* shift close to the cluster, find a new factorization, and refine */ 00142 /* the shifted eigenvalues to suitable accuracy. */ 00143 /* (d) For each eigenvalue with a large enough relative separation compute */ 00144 /* the corresponding eigenvector by forming a rank revealing twisted */ 00145 /* factorization. Go back to (c) for any clusters that remain. */ 00146 00147 /* The desired accuracy of the output can be specified by the input */ 00148 /* parameter ABSTOL. */ 00149 00150 /* For more details, see DSTEMR's documentation and: */ 00151 /* - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations */ 00152 /* to compute orthogonal eigenvectors of symmetric tridiagonal matrices," */ 00153 /* Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004. */ 00154 /* - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and */ 00155 /* Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25, */ 00156 /* 2004. Also LAPACK Working Note 154. */ 00157 /* - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric */ 00158 /* tridiagonal eigenvalue/eigenvector problem", */ 00159 /* Computer Science Division Technical Report No. UCB/CSD-97-971, */ 00160 /* UC Berkeley, May 1997. */ 00161 00162 00163 /* Note 1 : ZHEEVR calls ZSTEMR when the full spectrum is requested */ 00164 /* on machines which conform to the ieee-754 floating point standard. */ 00165 /* ZHEEVR calls DSTEBZ and ZSTEIN on non-ieee machines and */ 00166 /* when partial spectrum requests are made. */ 00167 00168 /* Normal execution of ZSTEMR may create NaNs and infinities and */ 00169 /* hence may abort due to a floating point exception in environments */ 00170 /* which do not handle NaNs and infinities in the ieee standard default */ 00171 /* manner. */ 00172 00173 /* Arguments */ 00174 /* ========= */ 00175 00176 /* JOBZ (input) CHARACTER*1 */ 00177 /* = 'N': Compute eigenvalues only; */ 00178 /* = 'V': Compute eigenvalues and eigenvectors. */ 00179 00180 /* RANGE (input) CHARACTER*1 */ 00181 /* = 'A': all eigenvalues will be found. */ 00182 /* = 'V': all eigenvalues in the half-open interval (VL,VU] */ 00183 /* will be found. */ 00184 /* = 'I': the IL-th through IU-th eigenvalues will be found. */ 00185 /* ********* For RANGE = 'V' or 'I' and IU - IL < N - 1, DSTEBZ and */ 00186 /* ********* ZSTEIN are called */ 00187 00188 /* UPLO (input) CHARACTER*1 */ 00189 /* = 'U': Upper triangle of A is stored; */ 00190 /* = 'L': Lower triangle of A is stored. */ 00191 00192 /* N (input) INTEGER */ 00193 /* The order of the matrix A. N >= 0. */ 00194 00195 /* A (input/output) COMPLEX*16 array, dimension (LDA, N) */ 00196 /* On entry, the Hermitian matrix A. If UPLO = 'U', the */ 00197 /* leading N-by-N upper triangular part of A contains the */ 00198 /* upper triangular part of the matrix A. If UPLO = 'L', */ 00199 /* the leading N-by-N lower triangular part of A contains */ 00200 /* the lower triangular part of the matrix A. */ 00201 /* On exit, the lower triangle (if UPLO='L') or the upper */ 00202 /* triangle (if UPLO='U') of A, including the diagonal, is */ 00203 /* destroyed. */ 00204 00205 /* LDA (input) INTEGER */ 00206 /* The leading dimension of the array A. LDA >= max(1,N). */ 00207 00208 /* VL (input) DOUBLE PRECISION */ 00209 /* VU (input) DOUBLE PRECISION */ 00210 /* If RANGE='V', the lower and upper bounds of the interval to */ 00211 /* be searched for eigenvalues. VL < VU. */ 00212 /* Not referenced if RANGE = 'A' or 'I'. */ 00213 00214 /* IL (input) INTEGER */ 00215 /* IU (input) INTEGER */ 00216 /* If RANGE='I', the indices (in ascending order) of the */ 00217 /* smallest and largest eigenvalues to be returned. */ 00218 /* 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */ 00219 /* Not referenced if RANGE = 'A' or 'V'. */ 00220 00221 /* ABSTOL (input) DOUBLE PRECISION */ 00222 /* The absolute error tolerance for the eigenvalues. */ 00223 /* An approximate eigenvalue is accepted as converged */ 00224 /* when it is determined to lie in an interval [a,b] */ 00225 /* of width less than or equal to */ 00226 00227 /* ABSTOL + EPS * max( |a|,|b| ) , */ 00228 00229 /* where EPS is the machine precision. If ABSTOL is less than */ 00230 /* or equal to zero, then EPS*|T| will be used in its place, */ 00231 /* where |T| is the 1-norm of the tridiagonal matrix obtained */ 00232 /* by reducing A to tridiagonal form. */ 00233 00234 /* See "Computing Small Singular Values of Bidiagonal Matrices */ 00235 /* with Guaranteed High Relative Accuracy," by Demmel and */ 00236 /* Kahan, LAPACK Working Note #3. */ 00237 00238 /* If high relative accuracy is important, set ABSTOL to */ 00239 /* DLAMCH( 'Safe minimum' ). Doing so will guarantee that */ 00240 /* eigenvalues are computed to high relative accuracy when */ 00241 /* possible in future releases. The current code does not */ 00242 /* make any guarantees about high relative accuracy, but */ 00243 /* furutre releases will. See J. Barlow and J. Demmel, */ 00244 /* "Computing Accurate Eigensystems of Scaled Diagonally */ 00245 /* Dominant Matrices", LAPACK Working Note #7, for a discussion */ 00246 /* of which matrices define their eigenvalues to high relative */ 00247 /* accuracy. */ 00248 00249 /* M (output) INTEGER */ 00250 /* The total number of eigenvalues found. 0 <= M <= N. */ 00251 /* If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */ 00252 00253 /* W (output) DOUBLE PRECISION array, dimension (N) */ 00254 /* The first M elements contain the selected eigenvalues in */ 00255 /* ascending order. */ 00256 00257 /* Z (output) COMPLEX*16 array, dimension (LDZ, max(1,M)) */ 00258 /* If JOBZ = 'V', then if INFO = 0, the first M columns of Z */ 00259 /* contain the orthonormal eigenvectors of the matrix A */ 00260 /* corresponding to the selected eigenvalues, with the i-th */ 00261 /* column of Z holding the eigenvector associated with W(i). */ 00262 /* If JOBZ = 'N', then Z is not referenced. */ 00263 /* Note: the user must ensure that at least max(1,M) columns are */ 00264 /* supplied in the array Z; if RANGE = 'V', the exact value of M */ 00265 /* is not known in advance and an upper bound must be used. */ 00266 00267 /* LDZ (input) INTEGER */ 00268 /* The leading dimension of the array Z. LDZ >= 1, and if */ 00269 /* JOBZ = 'V', LDZ >= max(1,N). */ 00270 00271 /* ISUPPZ (output) INTEGER array, dimension ( 2*max(1,M) ) */ 00272 /* The support of the eigenvectors in Z, i.e., the indices */ 00273 /* indicating the nonzero elements in Z. The i-th eigenvector */ 00274 /* is nonzero only in elements ISUPPZ( 2*i-1 ) through */ 00275 /* ISUPPZ( 2*i ). */ 00276 /* ********* Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1 */ 00277 00278 /* WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK)) */ 00279 /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ 00280 00281 /* LWORK (input) INTEGER */ 00282 /* The length of the array WORK. LWORK >= max(1,2*N). */ 00283 /* For optimal efficiency, LWORK >= (NB+1)*N, */ 00284 /* where NB is the max of the blocksize for ZHETRD and for */ 00285 /* ZUNMTR as returned by ILAENV. */ 00286 00287 /* If LWORK = -1, then a workspace query is assumed; the routine */ 00288 /* only calculates the optimal sizes of the WORK, RWORK and */ 00289 /* IWORK arrays, returns these values as the first entries of */ 00290 /* the WORK, RWORK and IWORK arrays, and no error message */ 00291 /* related to LWORK or LRWORK or LIWORK is issued by XERBLA. */ 00292 00293 /* RWORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LRWORK)) */ 00294 /* On exit, if INFO = 0, RWORK(1) returns the optimal */ 00295 /* (and minimal) LRWORK. */ 00296 00297 /* LRWORK (input) INTEGER */ 00298 /* The length of the array RWORK. LRWORK >= max(1,24*N). */ 00299 00300 /* If LRWORK = -1, then a workspace query is assumed; the */ 00301 /* routine only calculates the optimal sizes of the WORK, RWORK */ 00302 /* and IWORK arrays, returns these values as the first entries */ 00303 /* of the WORK, RWORK and IWORK arrays, and no error message */ 00304 /* related to LWORK or LRWORK or LIWORK is issued by XERBLA. */ 00305 00306 /* IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) */ 00307 /* On exit, if INFO = 0, IWORK(1) returns the optimal */ 00308 /* (and minimal) LIWORK. */ 00309 00310 /* LIWORK (input) INTEGER */ 00311 /* The dimension of the array IWORK. LIWORK >= max(1,10*N). */ 00312 00313 /* If LIWORK = -1, then a workspace query is assumed; the */ 00314 /* routine only calculates the optimal sizes of the WORK, RWORK */ 00315 /* and IWORK arrays, returns these values as the first entries */ 00316 /* of the WORK, RWORK and IWORK arrays, and no error message */ 00317 /* related to LWORK or LRWORK or LIWORK is issued by XERBLA. */ 00318 00319 /* INFO (output) INTEGER */ 00320 /* = 0: successful exit */ 00321 /* < 0: if INFO = -i, the i-th argument had an illegal value */ 00322 /* > 0: Internal error */ 00323 00324 /* Further Details */ 00325 /* =============== */ 00326 00327 /* Based on contributions by */ 00328 /* Inderjit Dhillon, IBM Almaden, USA */ 00329 /* Osni Marques, LBNL/NERSC, USA */ 00330 /* Ken Stanley, Computer Science Division, University of */ 00331 /* California at Berkeley, USA */ 00332 /* Jason Riedy, Computer Science Division, University of */ 00333 /* California at Berkeley, USA */ 00334 00335 /* ===================================================================== */ 00336 00337 /* .. Parameters .. */ 00338 /* .. */ 00339 /* .. Local Scalars .. */ 00340 /* .. */ 00341 /* .. External Functions .. */ 00342 /* .. */ 00343 /* .. External Subroutines .. */ 00344 /* .. */ 00345 /* .. Intrinsic Functions .. */ 00346 /* .. */ 00347 /* .. Executable Statements .. */ 00348 00349 /* Test the input parameters. */ 00350 00351 /* Parameter adjustments */ 00352 a_dim1 = *lda; 00353 a_offset = 1 + a_dim1; 00354 a -= a_offset; 00355 --w; 00356 z_dim1 = *ldz; 00357 z_offset = 1 + z_dim1; 00358 z__ -= z_offset; 00359 --isuppz; 00360 --work; 00361 --rwork; 00362 --iwork; 00363 00364 /* Function Body */ 00365 ieeeok = ilaenv_(&c__10, "ZHEEVR", "N", &c__1, &c__2, &c__3, &c__4); 00366 00367 lower = lsame_(uplo, "L"); 00368 wantz = lsame_(jobz, "V"); 00369 alleig = lsame_(range, "A"); 00370 valeig = lsame_(range, "V"); 00371 indeig = lsame_(range, "I"); 00372 00373 lquery = *lwork == -1 || *lrwork == -1 || *liwork == -1; 00374 00375 /* Computing MAX */ 00376 i__1 = 1, i__2 = *n * 24; 00377 lrwmin = max(i__1,i__2); 00378 /* Computing MAX */ 00379 i__1 = 1, i__2 = *n * 10; 00380 liwmin = max(i__1,i__2); 00381 /* Computing MAX */ 00382 i__1 = 1, i__2 = *n << 1; 00383 lwmin = max(i__1,i__2); 00384 00385 *info = 0; 00386 if (! (wantz || lsame_(jobz, "N"))) { 00387 *info = -1; 00388 } else if (! (alleig || valeig || indeig)) { 00389 *info = -2; 00390 } else if (! (lower || lsame_(uplo, "U"))) { 00391 *info = -3; 00392 } else if (*n < 0) { 00393 *info = -4; 00394 } else if (*lda < max(1,*n)) { 00395 *info = -6; 00396 } else { 00397 if (valeig) { 00398 if (*n > 0 && *vu <= *vl) { 00399 *info = -8; 00400 } 00401 } else if (indeig) { 00402 if (*il < 1 || *il > max(1,*n)) { 00403 *info = -9; 00404 } else if (*iu < min(*n,*il) || *iu > *n) { 00405 *info = -10; 00406 } 00407 } 00408 } 00409 if (*info == 0) { 00410 if (*ldz < 1 || wantz && *ldz < *n) { 00411 *info = -15; 00412 } 00413 } 00414 00415 if (*info == 0) { 00416 nb = ilaenv_(&c__1, "ZHETRD", uplo, n, &c_n1, &c_n1, &c_n1); 00417 /* Computing MAX */ 00418 i__1 = nb, i__2 = ilaenv_(&c__1, "ZUNMTR", uplo, n, &c_n1, &c_n1, & 00419 c_n1); 00420 nb = max(i__1,i__2); 00421 /* Computing MAX */ 00422 i__1 = (nb + 1) * *n; 00423 lwkopt = max(i__1,lwmin); 00424 work[1].r = (doublereal) lwkopt, work[1].i = 0.; 00425 rwork[1] = (doublereal) lrwmin; 00426 iwork[1] = liwmin; 00427 00428 if (*lwork < lwmin && ! lquery) { 00429 *info = -18; 00430 } else if (*lrwork < lrwmin && ! lquery) { 00431 *info = -20; 00432 } else if (*liwork < liwmin && ! lquery) { 00433 *info = -22; 00434 } 00435 } 00436 00437 if (*info != 0) { 00438 i__1 = -(*info); 00439 xerbla_("ZHEEVR", &i__1); 00440 return 0; 00441 } else if (lquery) { 00442 return 0; 00443 } 00444 00445 /* Quick return if possible */ 00446 00447 *m = 0; 00448 if (*n == 0) { 00449 work[1].r = 1., work[1].i = 0.; 00450 return 0; 00451 } 00452 00453 if (*n == 1) { 00454 work[1].r = 2., work[1].i = 0.; 00455 if (alleig || indeig) { 00456 *m = 1; 00457 i__1 = a_dim1 + 1; 00458 w[1] = a[i__1].r; 00459 } else { 00460 i__1 = a_dim1 + 1; 00461 i__2 = a_dim1 + 1; 00462 if (*vl < a[i__1].r && *vu >= a[i__2].r) { 00463 *m = 1; 00464 i__1 = a_dim1 + 1; 00465 w[1] = a[i__1].r; 00466 } 00467 } 00468 if (wantz) { 00469 i__1 = z_dim1 + 1; 00470 z__[i__1].r = 1., z__[i__1].i = 0.; 00471 } 00472 return 0; 00473 } 00474 00475 /* Get machine constants. */ 00476 00477 safmin = dlamch_("Safe minimum"); 00478 eps = dlamch_("Precision"); 00479 smlnum = safmin / eps; 00480 bignum = 1. / smlnum; 00481 rmin = sqrt(smlnum); 00482 /* Computing MIN */ 00483 d__1 = sqrt(bignum), d__2 = 1. / sqrt(sqrt(safmin)); 00484 rmax = min(d__1,d__2); 00485 00486 /* Scale matrix to allowable range, if necessary. */ 00487 00488 iscale = 0; 00489 abstll = *abstol; 00490 if (valeig) { 00491 vll = *vl; 00492 vuu = *vu; 00493 } 00494 anrm = zlansy_("M", uplo, n, &a[a_offset], lda, &rwork[1]); 00495 if (anrm > 0. && anrm < rmin) { 00496 iscale = 1; 00497 sigma = rmin / anrm; 00498 } else if (anrm > rmax) { 00499 iscale = 1; 00500 sigma = rmax / anrm; 00501 } 00502 if (iscale == 1) { 00503 if (lower) { 00504 i__1 = *n; 00505 for (j = 1; j <= i__1; ++j) { 00506 i__2 = *n - j + 1; 00507 zdscal_(&i__2, &sigma, &a[j + j * a_dim1], &c__1); 00508 /* L10: */ 00509 } 00510 } else { 00511 i__1 = *n; 00512 for (j = 1; j <= i__1; ++j) { 00513 zdscal_(&j, &sigma, &a[j * a_dim1 + 1], &c__1); 00514 /* L20: */ 00515 } 00516 } 00517 if (*abstol > 0.) { 00518 abstll = *abstol * sigma; 00519 } 00520 if (valeig) { 00521 vll = *vl * sigma; 00522 vuu = *vu * sigma; 00523 } 00524 } 00525 /* Initialize indices into workspaces. Note: The IWORK indices are */ 00526 /* used only if DSTERF or ZSTEMR fail. */ 00527 /* WORK(INDTAU:INDTAU+N-1) stores the complex scalar factors of the */ 00528 /* elementary reflectors used in ZHETRD. */ 00529 indtau = 1; 00530 /* INDWK is the starting offset of the remaining complex workspace, */ 00531 /* and LLWORK is the remaining complex workspace size. */ 00532 indwk = indtau + *n; 00533 llwork = *lwork - indwk + 1; 00534 /* RWORK(INDRD:INDRD+N-1) stores the real tridiagonal's diagonal */ 00535 /* entries. */ 00536 indrd = 1; 00537 /* RWORK(INDRE:INDRE+N-1) stores the off-diagonal entries of the */ 00538 /* tridiagonal matrix from ZHETRD. */ 00539 indre = indrd + *n; 00540 /* RWORK(INDRDD:INDRDD+N-1) is a copy of the diagonal entries over */ 00541 /* -written by ZSTEMR (the DSTERF path copies the diagonal to W). */ 00542 indrdd = indre + *n; 00543 /* RWORK(INDREE:INDREE+N-1) is a copy of the off-diagonal entries over */ 00544 /* -written while computing the eigenvalues in DSTERF and ZSTEMR. */ 00545 indree = indrdd + *n; 00546 /* INDRWK is the starting offset of the left-over real workspace, and */ 00547 /* LLRWORK is the remaining workspace size. */ 00548 indrwk = indree + *n; 00549 llrwork = *lrwork - indrwk + 1; 00550 /* IWORK(INDIBL:INDIBL+M-1) corresponds to IBLOCK in DSTEBZ and */ 00551 /* stores the block indices of each of the M<=N eigenvalues. */ 00552 indibl = 1; 00553 /* IWORK(INDISP:INDISP+NSPLIT-1) corresponds to ISPLIT in DSTEBZ and */ 00554 /* stores the starting and finishing indices of each block. */ 00555 indisp = indibl + *n; 00556 /* IWORK(INDIFL:INDIFL+N-1) stores the indices of eigenvectors */ 00557 /* that corresponding to eigenvectors that fail to converge in */ 00558 /* DSTEIN. This information is discarded; if any fail, the driver */ 00559 /* returns INFO > 0. */ 00560 indifl = indisp + *n; 00561 /* INDIWO is the offset of the remaining integer workspace. */ 00562 indiwo = indisp + *n; 00563 00564 /* Call ZHETRD to reduce Hermitian matrix to tridiagonal form. */ 00565 00566 zhetrd_(uplo, n, &a[a_offset], lda, &rwork[indrd], &rwork[indre], &work[ 00567 indtau], &work[indwk], &llwork, &iinfo); 00568 00569 /* If all eigenvalues are desired */ 00570 /* then call DSTERF or ZSTEMR and ZUNMTR. */ 00571 00572 test = FALSE_; 00573 if (indeig) { 00574 if (*il == 1 && *iu == *n) { 00575 test = TRUE_; 00576 } 00577 } 00578 if ((alleig || test) && ieeeok == 1) { 00579 if (! wantz) { 00580 dcopy_(n, &rwork[indrd], &c__1, &w[1], &c__1); 00581 i__1 = *n - 1; 00582 dcopy_(&i__1, &rwork[indre], &c__1, &rwork[indree], &c__1); 00583 dsterf_(n, &w[1], &rwork[indree], info); 00584 } else { 00585 i__1 = *n - 1; 00586 dcopy_(&i__1, &rwork[indre], &c__1, &rwork[indree], &c__1); 00587 dcopy_(n, &rwork[indrd], &c__1, &rwork[indrdd], &c__1); 00588 00589 if (*abstol <= *n * 2. * eps) { 00590 tryrac = TRUE_; 00591 } else { 00592 tryrac = FALSE_; 00593 } 00594 zstemr_(jobz, "A", n, &rwork[indrdd], &rwork[indree], vl, vu, il, 00595 iu, m, &w[1], &z__[z_offset], ldz, n, &isuppz[1], &tryrac, 00596 &rwork[indrwk], &llrwork, &iwork[1], liwork, info); 00597 00598 /* Apply unitary matrix used in reduction to tridiagonal */ 00599 /* form to eigenvectors returned by ZSTEIN. */ 00600 00601 if (wantz && *info == 0) { 00602 indwkn = indwk; 00603 llwrkn = *lwork - indwkn + 1; 00604 zunmtr_("L", uplo, "N", n, m, &a[a_offset], lda, &work[indtau] 00605 , &z__[z_offset], ldz, &work[indwkn], &llwrkn, &iinfo); 00606 } 00607 } 00608 00609 00610 if (*info == 0) { 00611 *m = *n; 00612 goto L30; 00613 } 00614 *info = 0; 00615 } 00616 00617 /* Otherwise, call DSTEBZ and, if eigenvectors are desired, ZSTEIN. */ 00618 /* Also call DSTEBZ and ZSTEIN if ZSTEMR fails. */ 00619 00620 if (wantz) { 00621 *(unsigned char *)order = 'B'; 00622 } else { 00623 *(unsigned char *)order = 'E'; 00624 } 00625 dstebz_(range, order, n, &vll, &vuu, il, iu, &abstll, &rwork[indrd], & 00626 rwork[indre], m, &nsplit, &w[1], &iwork[indibl], &iwork[indisp], & 00627 rwork[indrwk], &iwork[indiwo], info); 00628 00629 if (wantz) { 00630 zstein_(n, &rwork[indrd], &rwork[indre], m, &w[1], &iwork[indibl], & 00631 iwork[indisp], &z__[z_offset], ldz, &rwork[indrwk], &iwork[ 00632 indiwo], &iwork[indifl], info); 00633 00634 /* Apply unitary matrix used in reduction to tridiagonal */ 00635 /* form to eigenvectors returned by ZSTEIN. */ 00636 00637 indwkn = indwk; 00638 llwrkn = *lwork - indwkn + 1; 00639 zunmtr_("L", uplo, "N", n, m, &a[a_offset], lda, &work[indtau], &z__[ 00640 z_offset], ldz, &work[indwkn], &llwrkn, &iinfo); 00641 } 00642 00643 /* If matrix was scaled, then rescale eigenvalues appropriately. */ 00644 00645 L30: 00646 if (iscale == 1) { 00647 if (*info == 0) { 00648 imax = *m; 00649 } else { 00650 imax = *info - 1; 00651 } 00652 d__1 = 1. / sigma; 00653 dscal_(&imax, &d__1, &w[1], &c__1); 00654 } 00655 00656 /* If eigenvalues are not in order, then sort them, along with */ 00657 /* eigenvectors. */ 00658 00659 if (wantz) { 00660 i__1 = *m - 1; 00661 for (j = 1; j <= i__1; ++j) { 00662 i__ = 0; 00663 tmp1 = w[j]; 00664 i__2 = *m; 00665 for (jj = j + 1; jj <= i__2; ++jj) { 00666 if (w[jj] < tmp1) { 00667 i__ = jj; 00668 tmp1 = w[jj]; 00669 } 00670 /* L40: */ 00671 } 00672 00673 if (i__ != 0) { 00674 itmp1 = iwork[indibl + i__ - 1]; 00675 w[i__] = w[j]; 00676 iwork[indibl + i__ - 1] = iwork[indibl + j - 1]; 00677 w[j] = tmp1; 00678 iwork[indibl + j - 1] = itmp1; 00679 zswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1], 00680 &c__1); 00681 } 00682 /* L50: */ 00683 } 00684 } 00685 00686 /* Set WORK(1) to optimal workspace size. */ 00687 00688 work[1].r = (doublereal) lwkopt, work[1].i = 0.; 00689 rwork[1] = (doublereal) lrwmin; 00690 iwork[1] = liwmin; 00691 00692 return 0; 00693 00694 /* End of ZHEEVR */ 00695 00696 } /* zheevr_ */