00001 /* zhecon.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static integer c__1 = 1; 00019 00020 /* Subroutine */ int zhecon_(char *uplo, integer *n, doublecomplex *a, 00021 integer *lda, integer *ipiv, doublereal *anorm, doublereal *rcond, 00022 doublecomplex *work, integer *info) 00023 { 00024 /* System generated locals */ 00025 integer a_dim1, a_offset, i__1, i__2; 00026 00027 /* Local variables */ 00028 integer i__, kase; 00029 extern logical lsame_(char *, char *); 00030 integer isave[3]; 00031 logical upper; 00032 extern /* Subroutine */ int zlacn2_(integer *, doublecomplex *, 00033 doublecomplex *, doublereal *, integer *, integer *), xerbla_( 00034 char *, integer *); 00035 doublereal ainvnm; 00036 extern /* Subroutine */ int zhetrs_(char *, integer *, integer *, 00037 doublecomplex *, integer *, integer *, doublecomplex *, integer *, 00038 integer *); 00039 00040 00041 /* -- LAPACK routine (version 3.2) -- */ 00042 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00043 /* November 2006 */ 00044 00045 /* Modified to call ZLACN2 in place of ZLACON, 10 Feb 03, SJH. */ 00046 00047 /* .. Scalar Arguments .. */ 00048 /* .. */ 00049 /* .. Array Arguments .. */ 00050 /* .. */ 00051 00052 /* Purpose */ 00053 /* ======= */ 00054 00055 /* ZHECON estimates the reciprocal of the condition number of a complex */ 00056 /* Hermitian matrix A using the factorization A = U*D*U**H or */ 00057 /* A = L*D*L**H computed by ZHETRF. */ 00058 00059 /* An estimate is obtained for norm(inv(A)), and the reciprocal of the */ 00060 /* condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))). */ 00061 00062 /* Arguments */ 00063 /* ========= */ 00064 00065 /* UPLO (input) CHARACTER*1 */ 00066 /* Specifies whether the details of the factorization are stored */ 00067 /* as an upper or lower triangular matrix. */ 00068 /* = 'U': Upper triangular, form is A = U*D*U**H; */ 00069 /* = 'L': Lower triangular, form is A = L*D*L**H. */ 00070 00071 /* N (input) INTEGER */ 00072 /* The order of the matrix A. N >= 0. */ 00073 00074 /* A (input) COMPLEX*16 array, dimension (LDA,N) */ 00075 /* The block diagonal matrix D and the multipliers used to */ 00076 /* obtain the factor U or L as computed by ZHETRF. */ 00077 00078 /* LDA (input) INTEGER */ 00079 /* The leading dimension of the array A. LDA >= max(1,N). */ 00080 00081 /* IPIV (input) INTEGER array, dimension (N) */ 00082 /* Details of the interchanges and the block structure of D */ 00083 /* as determined by ZHETRF. */ 00084 00085 /* ANORM (input) DOUBLE PRECISION */ 00086 /* The 1-norm of the original matrix A. */ 00087 00088 /* RCOND (output) DOUBLE PRECISION */ 00089 /* The reciprocal of the condition number of the matrix A, */ 00090 /* computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an */ 00091 /* estimate of the 1-norm of inv(A) computed in this routine. */ 00092 00093 /* WORK (workspace) COMPLEX*16 array, dimension (2*N) */ 00094 00095 /* INFO (output) INTEGER */ 00096 /* = 0: successful exit */ 00097 /* < 0: if INFO = -i, the i-th argument had an illegal value */ 00098 00099 /* ===================================================================== */ 00100 00101 /* .. Parameters .. */ 00102 /* .. */ 00103 /* .. Local Scalars .. */ 00104 /* .. */ 00105 /* .. Local Arrays .. */ 00106 /* .. */ 00107 /* .. External Functions .. */ 00108 /* .. */ 00109 /* .. External Subroutines .. */ 00110 /* .. */ 00111 /* .. Intrinsic Functions .. */ 00112 /* .. */ 00113 /* .. Executable Statements .. */ 00114 00115 /* Test the input parameters. */ 00116 00117 /* Parameter adjustments */ 00118 a_dim1 = *lda; 00119 a_offset = 1 + a_dim1; 00120 a -= a_offset; 00121 --ipiv; 00122 --work; 00123 00124 /* Function Body */ 00125 *info = 0; 00126 upper = lsame_(uplo, "U"); 00127 if (! upper && ! lsame_(uplo, "L")) { 00128 *info = -1; 00129 } else if (*n < 0) { 00130 *info = -2; 00131 } else if (*lda < max(1,*n)) { 00132 *info = -4; 00133 } else if (*anorm < 0.) { 00134 *info = -6; 00135 } 00136 if (*info != 0) { 00137 i__1 = -(*info); 00138 xerbla_("ZHECON", &i__1); 00139 return 0; 00140 } 00141 00142 /* Quick return if possible */ 00143 00144 *rcond = 0.; 00145 if (*n == 0) { 00146 *rcond = 1.; 00147 return 0; 00148 } else if (*anorm <= 0.) { 00149 return 0; 00150 } 00151 00152 /* Check that the diagonal matrix D is nonsingular. */ 00153 00154 if (upper) { 00155 00156 /* Upper triangular storage: examine D from bottom to top */ 00157 00158 for (i__ = *n; i__ >= 1; --i__) { 00159 i__1 = i__ + i__ * a_dim1; 00160 if (ipiv[i__] > 0 && (a[i__1].r == 0. && a[i__1].i == 0.)) { 00161 return 0; 00162 } 00163 /* L10: */ 00164 } 00165 } else { 00166 00167 /* Lower triangular storage: examine D from top to bottom. */ 00168 00169 i__1 = *n; 00170 for (i__ = 1; i__ <= i__1; ++i__) { 00171 i__2 = i__ + i__ * a_dim1; 00172 if (ipiv[i__] > 0 && (a[i__2].r == 0. && a[i__2].i == 0.)) { 00173 return 0; 00174 } 00175 /* L20: */ 00176 } 00177 } 00178 00179 /* Estimate the 1-norm of the inverse. */ 00180 00181 kase = 0; 00182 L30: 00183 zlacn2_(n, &work[*n + 1], &work[1], &ainvnm, &kase, isave); 00184 if (kase != 0) { 00185 00186 /* Multiply by inv(L*D*L') or inv(U*D*U'). */ 00187 00188 zhetrs_(uplo, n, &c__1, &a[a_offset], lda, &ipiv[1], &work[1], n, 00189 info); 00190 goto L30; 00191 } 00192 00193 /* Compute the estimate of the reciprocal condition number. */ 00194 00195 if (ainvnm != 0.) { 00196 *rcond = 1. / ainvnm / *anorm; 00197 } 00198 00199 return 0; 00200 00201 /* End of ZHECON */ 00202 00203 } /* zhecon_ */