00001 /* zhbgv.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Subroutine */ int zhbgv_(char *jobz, char *uplo, integer *n, integer *ka, 00017 integer *kb, doublecomplex *ab, integer *ldab, doublecomplex *bb, 00018 integer *ldbb, doublereal *w, doublecomplex *z__, integer *ldz, 00019 doublecomplex *work, doublereal *rwork, integer *info) 00020 { 00021 /* System generated locals */ 00022 integer ab_dim1, ab_offset, bb_dim1, bb_offset, z_dim1, z_offset, i__1; 00023 00024 /* Local variables */ 00025 integer inde; 00026 char vect[1]; 00027 extern logical lsame_(char *, char *); 00028 integer iinfo; 00029 logical upper, wantz; 00030 extern /* Subroutine */ int xerbla_(char *, integer *), dsterf_( 00031 integer *, doublereal *, doublereal *, integer *), zhbtrd_(char *, 00032 char *, integer *, integer *, doublecomplex *, integer *, 00033 doublereal *, doublereal *, doublecomplex *, integer *, 00034 doublecomplex *, integer *); 00035 integer indwrk; 00036 extern /* Subroutine */ int zhbgst_(char *, char *, integer *, integer *, 00037 integer *, doublecomplex *, integer *, doublecomplex *, integer *, 00038 doublecomplex *, integer *, doublecomplex *, doublereal *, 00039 integer *), zpbstf_(char *, integer *, integer *, 00040 doublecomplex *, integer *, integer *), zsteqr_(char *, 00041 integer *, doublereal *, doublereal *, doublecomplex *, integer *, 00042 doublereal *, integer *); 00043 00044 00045 /* -- LAPACK driver routine (version 3.2) -- */ 00046 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00047 /* November 2006 */ 00048 00049 /* .. Scalar Arguments .. */ 00050 /* .. */ 00051 /* .. Array Arguments .. */ 00052 /* .. */ 00053 00054 /* Purpose */ 00055 /* ======= */ 00056 00057 /* ZHBGV computes all the eigenvalues, and optionally, the eigenvectors */ 00058 /* of a complex generalized Hermitian-definite banded eigenproblem, of */ 00059 /* the form A*x=(lambda)*B*x. Here A and B are assumed to be Hermitian */ 00060 /* and banded, and B is also positive definite. */ 00061 00062 /* Arguments */ 00063 /* ========= */ 00064 00065 /* JOBZ (input) CHARACTER*1 */ 00066 /* = 'N': Compute eigenvalues only; */ 00067 /* = 'V': Compute eigenvalues and eigenvectors. */ 00068 00069 /* UPLO (input) CHARACTER*1 */ 00070 /* = 'U': Upper triangles of A and B are stored; */ 00071 /* = 'L': Lower triangles of A and B are stored. */ 00072 00073 /* N (input) INTEGER */ 00074 /* The order of the matrices A and B. N >= 0. */ 00075 00076 /* KA (input) INTEGER */ 00077 /* The number of superdiagonals of the matrix A if UPLO = 'U', */ 00078 /* or the number of subdiagonals if UPLO = 'L'. KA >= 0. */ 00079 00080 /* KB (input) INTEGER */ 00081 /* The number of superdiagonals of the matrix B if UPLO = 'U', */ 00082 /* or the number of subdiagonals if UPLO = 'L'. KB >= 0. */ 00083 00084 /* AB (input/output) COMPLEX*16 array, dimension (LDAB, N) */ 00085 /* On entry, the upper or lower triangle of the Hermitian band */ 00086 /* matrix A, stored in the first ka+1 rows of the array. The */ 00087 /* j-th column of A is stored in the j-th column of the array AB */ 00088 /* as follows: */ 00089 /* if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j; */ 00090 /* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka). */ 00091 00092 /* On exit, the contents of AB are destroyed. */ 00093 00094 /* LDAB (input) INTEGER */ 00095 /* The leading dimension of the array AB. LDAB >= KA+1. */ 00096 00097 /* BB (input/output) COMPLEX*16 array, dimension (LDBB, N) */ 00098 /* On entry, the upper or lower triangle of the Hermitian band */ 00099 /* matrix B, stored in the first kb+1 rows of the array. The */ 00100 /* j-th column of B is stored in the j-th column of the array BB */ 00101 /* as follows: */ 00102 /* if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j; */ 00103 /* if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb). */ 00104 00105 /* On exit, the factor S from the split Cholesky factorization */ 00106 /* B = S**H*S, as returned by ZPBSTF. */ 00107 00108 /* LDBB (input) INTEGER */ 00109 /* The leading dimension of the array BB. LDBB >= KB+1. */ 00110 00111 /* W (output) DOUBLE PRECISION array, dimension (N) */ 00112 /* If INFO = 0, the eigenvalues in ascending order. */ 00113 00114 /* Z (output) COMPLEX*16 array, dimension (LDZ, N) */ 00115 /* If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of */ 00116 /* eigenvectors, with the i-th column of Z holding the */ 00117 /* eigenvector associated with W(i). The eigenvectors are */ 00118 /* normalized so that Z**H*B*Z = I. */ 00119 /* If JOBZ = 'N', then Z is not referenced. */ 00120 00121 /* LDZ (input) INTEGER */ 00122 /* The leading dimension of the array Z. LDZ >= 1, and if */ 00123 /* JOBZ = 'V', LDZ >= N. */ 00124 00125 /* WORK (workspace) COMPLEX*16 array, dimension (N) */ 00126 00127 /* RWORK (workspace) DOUBLE PRECISION array, dimension (3*N) */ 00128 00129 /* INFO (output) INTEGER */ 00130 /* = 0: successful exit */ 00131 /* < 0: if INFO = -i, the i-th argument had an illegal value */ 00132 /* > 0: if INFO = i, and i is: */ 00133 /* <= N: the algorithm failed to converge: */ 00134 /* i off-diagonal elements of an intermediate */ 00135 /* tridiagonal form did not converge to zero; */ 00136 /* > N: if INFO = N + i, for 1 <= i <= N, then ZPBSTF */ 00137 /* returned INFO = i: B is not positive definite. */ 00138 /* The factorization of B could not be completed and */ 00139 /* no eigenvalues or eigenvectors were computed. */ 00140 00141 /* ===================================================================== */ 00142 00143 /* .. Local Scalars .. */ 00144 /* .. */ 00145 /* .. External Functions .. */ 00146 /* .. */ 00147 /* .. External Subroutines .. */ 00148 /* .. */ 00149 /* .. Executable Statements .. */ 00150 00151 /* Test the input parameters. */ 00152 00153 /* Parameter adjustments */ 00154 ab_dim1 = *ldab; 00155 ab_offset = 1 + ab_dim1; 00156 ab -= ab_offset; 00157 bb_dim1 = *ldbb; 00158 bb_offset = 1 + bb_dim1; 00159 bb -= bb_offset; 00160 --w; 00161 z_dim1 = *ldz; 00162 z_offset = 1 + z_dim1; 00163 z__ -= z_offset; 00164 --work; 00165 --rwork; 00166 00167 /* Function Body */ 00168 wantz = lsame_(jobz, "V"); 00169 upper = lsame_(uplo, "U"); 00170 00171 *info = 0; 00172 if (! (wantz || lsame_(jobz, "N"))) { 00173 *info = -1; 00174 } else if (! (upper || lsame_(uplo, "L"))) { 00175 *info = -2; 00176 } else if (*n < 0) { 00177 *info = -3; 00178 } else if (*ka < 0) { 00179 *info = -4; 00180 } else if (*kb < 0 || *kb > *ka) { 00181 *info = -5; 00182 } else if (*ldab < *ka + 1) { 00183 *info = -7; 00184 } else if (*ldbb < *kb + 1) { 00185 *info = -9; 00186 } else if (*ldz < 1 || wantz && *ldz < *n) { 00187 *info = -12; 00188 } 00189 if (*info != 0) { 00190 i__1 = -(*info); 00191 xerbla_("ZHBGV ", &i__1); 00192 return 0; 00193 } 00194 00195 /* Quick return if possible */ 00196 00197 if (*n == 0) { 00198 return 0; 00199 } 00200 00201 /* Form a split Cholesky factorization of B. */ 00202 00203 zpbstf_(uplo, n, kb, &bb[bb_offset], ldbb, info); 00204 if (*info != 0) { 00205 *info = *n + *info; 00206 return 0; 00207 } 00208 00209 /* Transform problem to standard eigenvalue problem. */ 00210 00211 inde = 1; 00212 indwrk = inde + *n; 00213 zhbgst_(jobz, uplo, n, ka, kb, &ab[ab_offset], ldab, &bb[bb_offset], ldbb, 00214 &z__[z_offset], ldz, &work[1], &rwork[indwrk], &iinfo); 00215 00216 /* Reduce to tridiagonal form. */ 00217 00218 if (wantz) { 00219 *(unsigned char *)vect = 'U'; 00220 } else { 00221 *(unsigned char *)vect = 'N'; 00222 } 00223 zhbtrd_(vect, uplo, n, ka, &ab[ab_offset], ldab, &w[1], &rwork[inde], & 00224 z__[z_offset], ldz, &work[1], &iinfo); 00225 00226 /* For eigenvalues only, call DSTERF. For eigenvectors, call ZSTEQR. */ 00227 00228 if (! wantz) { 00229 dsterf_(n, &w[1], &rwork[inde], info); 00230 } else { 00231 zsteqr_(jobz, n, &w[1], &rwork[inde], &z__[z_offset], ldz, &rwork[ 00232 indwrk], info); 00233 } 00234 return 0; 00235 00236 /* End of ZHBGV */ 00237 00238 } /* zhbgv_ */