00001 /* zgerfsx.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static logical c_true = TRUE_; 00019 static logical c_false = FALSE_; 00020 00021 /* Subroutine */ int zgerfsx_(char *trans, char *equed, integer *n, integer * 00022 nrhs, doublecomplex *a, integer *lda, doublecomplex *af, integer * 00023 ldaf, integer *ipiv, doublereal *r__, doublereal *c__, doublecomplex * 00024 b, integer *ldb, doublecomplex *x, integer *ldx, doublereal *rcond, 00025 doublereal *berr, integer *n_err_bnds__, doublereal *err_bnds_norm__, 00026 doublereal *err_bnds_comp__, integer *nparams, doublereal *params, 00027 doublecomplex *work, doublereal *rwork, integer *info) 00028 { 00029 /* System generated locals */ 00030 integer a_dim1, a_offset, af_dim1, af_offset, b_dim1, b_offset, x_dim1, 00031 x_offset, err_bnds_norm_dim1, err_bnds_norm_offset, 00032 err_bnds_comp_dim1, err_bnds_comp_offset, i__1; 00033 doublereal d__1, d__2; 00034 00035 /* Builtin functions */ 00036 double sqrt(doublereal); 00037 00038 /* Local variables */ 00039 doublereal illrcond_thresh__, unstable_thresh__, err_lbnd__; 00040 integer ref_type__; 00041 extern integer ilatrans_(char *); 00042 integer j; 00043 doublereal rcond_tmp__; 00044 integer prec_type__, trans_type__; 00045 doublereal cwise_wrong__; 00046 extern /* Subroutine */ int zla_gerfsx_extended__(integer *, integer *, 00047 integer *, integer *, doublecomplex *, integer *, doublecomplex *, 00048 integer *, integer *, logical *, doublereal *, doublecomplex *, 00049 integer *, doublecomplex *, integer *, doublereal *, integer *, 00050 doublereal *, doublereal *, doublecomplex *, doublereal *, 00051 doublecomplex *, doublecomplex *, doublereal *, integer *, 00052 doublereal *, doublereal *, logical *, integer *); 00053 char norm[1]; 00054 logical ignore_cwise__; 00055 extern logical lsame_(char *, char *); 00056 doublereal anorm; 00057 extern doublereal zla_gercond_c__(char *, integer *, doublecomplex *, 00058 integer *, doublecomplex *, integer *, integer *, doublereal *, 00059 logical *, integer *, doublecomplex *, doublereal *, ftnlen), 00060 zla_gercond_x__(char *, integer *, doublecomplex *, integer *, 00061 doublecomplex *, integer *, integer *, doublecomplex *, integer *, 00062 doublecomplex *, doublereal *, ftnlen), dlamch_(char *); 00063 extern /* Subroutine */ int xerbla_(char *, integer *); 00064 extern doublereal zlange_(char *, integer *, integer *, doublecomplex *, 00065 integer *, doublereal *); 00066 extern /* Subroutine */ int zgecon_(char *, integer *, doublecomplex *, 00067 integer *, doublereal *, doublereal *, doublecomplex *, 00068 doublereal *, integer *); 00069 logical colequ, notran, rowequ; 00070 extern integer ilaprec_(char *); 00071 integer ithresh, n_norms__; 00072 doublereal rthresh; 00073 00074 00075 /* -- LAPACK routine (version 3.2.1) -- */ 00076 /* -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- */ 00077 /* -- Jason Riedy of Univ. of California Berkeley. -- */ 00078 /* -- April 2009 -- */ 00079 00080 /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ 00081 /* -- Univ. of California Berkeley and NAG Ltd. -- */ 00082 00083 /* .. */ 00084 /* .. Scalar Arguments .. */ 00085 /* .. */ 00086 /* .. Array Arguments .. */ 00087 /* .. */ 00088 00089 /* Purpose */ 00090 /* ======= */ 00091 00092 /* ZGERFSX improves the computed solution to a system of linear */ 00093 /* equations and provides error bounds and backward error estimates */ 00094 /* for the solution. In addition to normwise error bound, the code */ 00095 /* provides maximum componentwise error bound if possible. See */ 00096 /* comments for ERR_BNDS_NORM and ERR_BNDS_COMP for details of the */ 00097 /* error bounds. */ 00098 00099 /* The original system of linear equations may have been equilibrated */ 00100 /* before calling this routine, as described by arguments EQUED, R */ 00101 /* and C below. In this case, the solution and error bounds returned */ 00102 /* are for the original unequilibrated system. */ 00103 00104 /* Arguments */ 00105 /* ========= */ 00106 00107 /* Some optional parameters are bundled in the PARAMS array. These */ 00108 /* settings determine how refinement is performed, but often the */ 00109 /* defaults are acceptable. If the defaults are acceptable, users */ 00110 /* can pass NPARAMS = 0 which prevents the source code from accessing */ 00111 /* the PARAMS argument. */ 00112 00113 /* TRANS (input) CHARACTER*1 */ 00114 /* Specifies the form of the system of equations: */ 00115 /* = 'N': A * X = B (No transpose) */ 00116 /* = 'T': A**T * X = B (Transpose) */ 00117 /* = 'C': A**H * X = B (Conjugate transpose = Transpose) */ 00118 00119 /* EQUED (input) CHARACTER*1 */ 00120 /* Specifies the form of equilibration that was done to A */ 00121 /* before calling this routine. This is needed to compute */ 00122 /* the solution and error bounds correctly. */ 00123 /* = 'N': No equilibration */ 00124 /* = 'R': Row equilibration, i.e., A has been premultiplied by */ 00125 /* diag(R). */ 00126 /* = 'C': Column equilibration, i.e., A has been postmultiplied */ 00127 /* by diag(C). */ 00128 /* = 'B': Both row and column equilibration, i.e., A has been */ 00129 /* replaced by diag(R) * A * diag(C). */ 00130 /* The right hand side B has been changed accordingly. */ 00131 00132 /* N (input) INTEGER */ 00133 /* The order of the matrix A. N >= 0. */ 00134 00135 /* NRHS (input) INTEGER */ 00136 /* The number of right hand sides, i.e., the number of columns */ 00137 /* of the matrices B and X. NRHS >= 0. */ 00138 00139 /* A (input) COMPLEX*16 array, dimension (LDA,N) */ 00140 /* The original N-by-N matrix A. */ 00141 00142 /* LDA (input) INTEGER */ 00143 /* The leading dimension of the array A. LDA >= max(1,N). */ 00144 00145 /* AF (input) COMPLEX*16 array, dimension (LDAF,N) */ 00146 /* The factors L and U from the factorization A = P*L*U */ 00147 /* as computed by ZGETRF. */ 00148 00149 /* LDAF (input) INTEGER */ 00150 /* The leading dimension of the array AF. LDAF >= max(1,N). */ 00151 00152 /* IPIV (input) INTEGER array, dimension (N) */ 00153 /* The pivot indices from ZGETRF; for 1<=i<=N, row i of the */ 00154 /* matrix was interchanged with row IPIV(i). */ 00155 00156 /* R (input or output) DOUBLE PRECISION array, dimension (N) */ 00157 /* The row scale factors for A. If EQUED = 'R' or 'B', A is */ 00158 /* multiplied on the left by diag(R); if EQUED = 'N' or 'C', R */ 00159 /* is not accessed. R is an input argument if FACT = 'F'; */ 00160 /* otherwise, R is an output argument. If FACT = 'F' and */ 00161 /* EQUED = 'R' or 'B', each element of R must be positive. */ 00162 /* If R is output, each element of R is a power of the radix. */ 00163 /* If R is input, each element of R should be a power of the radix */ 00164 /* to ensure a reliable solution and error estimates. Scaling by */ 00165 /* powers of the radix does not cause rounding errors unless the */ 00166 /* result underflows or overflows. Rounding errors during scaling */ 00167 /* lead to refining with a matrix that is not equivalent to the */ 00168 /* input matrix, producing error estimates that may not be */ 00169 /* reliable. */ 00170 00171 /* C (input or output) DOUBLE PRECISION array, dimension (N) */ 00172 /* The column scale factors for A. If EQUED = 'C' or 'B', A is */ 00173 /* multiplied on the right by diag(C); if EQUED = 'N' or 'R', C */ 00174 /* is not accessed. C is an input argument if FACT = 'F'; */ 00175 /* otherwise, C is an output argument. If FACT = 'F' and */ 00176 /* EQUED = 'C' or 'B', each element of C must be positive. */ 00177 /* If C is output, each element of C is a power of the radix. */ 00178 /* If C is input, each element of C should be a power of the radix */ 00179 /* to ensure a reliable solution and error estimates. Scaling by */ 00180 /* powers of the radix does not cause rounding errors unless the */ 00181 /* result underflows or overflows. Rounding errors during scaling */ 00182 /* lead to refining with a matrix that is not equivalent to the */ 00183 /* input matrix, producing error estimates that may not be */ 00184 /* reliable. */ 00185 00186 /* B (input) COMPLEX*16 array, dimension (LDB,NRHS) */ 00187 /* The right hand side matrix B. */ 00188 00189 /* LDB (input) INTEGER */ 00190 /* The leading dimension of the array B. LDB >= max(1,N). */ 00191 00192 /* X (input/output) COMPLEX*16 array, dimension (LDX,NRHS) */ 00193 /* On entry, the solution matrix X, as computed by ZGETRS. */ 00194 /* On exit, the improved solution matrix X. */ 00195 00196 /* LDX (input) INTEGER */ 00197 /* The leading dimension of the array X. LDX >= max(1,N). */ 00198 00199 /* RCOND (output) DOUBLE PRECISION */ 00200 /* Reciprocal scaled condition number. This is an estimate of the */ 00201 /* reciprocal Skeel condition number of the matrix A after */ 00202 /* equilibration (if done). If this is less than the machine */ 00203 /* precision (in particular, if it is zero), the matrix is singular */ 00204 /* to working precision. Note that the error may still be small even */ 00205 /* if this number is very small and the matrix appears ill- */ 00206 /* conditioned. */ 00207 00208 /* BERR (output) DOUBLE PRECISION array, dimension (NRHS) */ 00209 /* Componentwise relative backward error. This is the */ 00210 /* componentwise relative backward error of each solution vector X(j) */ 00211 /* (i.e., the smallest relative change in any element of A or B that */ 00212 /* makes X(j) an exact solution). */ 00213 00214 /* N_ERR_BNDS (input) INTEGER */ 00215 /* Number of error bounds to return for each right hand side */ 00216 /* and each type (normwise or componentwise). See ERR_BNDS_NORM and */ 00217 /* ERR_BNDS_COMP below. */ 00218 00219 /* ERR_BNDS_NORM (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS) */ 00220 /* For each right-hand side, this array contains information about */ 00221 /* various error bounds and condition numbers corresponding to the */ 00222 /* normwise relative error, which is defined as follows: */ 00223 00224 /* Normwise relative error in the ith solution vector: */ 00225 /* max_j (abs(XTRUE(j,i) - X(j,i))) */ 00226 /* ------------------------------ */ 00227 /* max_j abs(X(j,i)) */ 00228 00229 /* The array is indexed by the type of error information as described */ 00230 /* below. There currently are up to three pieces of information */ 00231 /* returned. */ 00232 00233 /* The first index in ERR_BNDS_NORM(i,:) corresponds to the ith */ 00234 /* right-hand side. */ 00235 00236 /* The second index in ERR_BNDS_NORM(:,err) contains the following */ 00237 /* three fields: */ 00238 /* err = 1 "Trust/don't trust" boolean. Trust the answer if the */ 00239 /* reciprocal condition number is less than the threshold */ 00240 /* sqrt(n) * dlamch('Epsilon'). */ 00241 00242 /* err = 2 "Guaranteed" error bound: The estimated forward error, */ 00243 /* almost certainly within a factor of 10 of the true error */ 00244 /* so long as the next entry is greater than the threshold */ 00245 /* sqrt(n) * dlamch('Epsilon'). This error bound should only */ 00246 /* be trusted if the previous boolean is true. */ 00247 00248 /* err = 3 Reciprocal condition number: Estimated normwise */ 00249 /* reciprocal condition number. Compared with the threshold */ 00250 /* sqrt(n) * dlamch('Epsilon') to determine if the error */ 00251 /* estimate is "guaranteed". These reciprocal condition */ 00252 /* numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some */ 00253 /* appropriately scaled matrix Z. */ 00254 /* Let Z = S*A, where S scales each row by a power of the */ 00255 /* radix so all absolute row sums of Z are approximately 1. */ 00256 00257 /* See Lapack Working Note 165 for further details and extra */ 00258 /* cautions. */ 00259 00260 /* ERR_BNDS_COMP (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS) */ 00261 /* For each right-hand side, this array contains information about */ 00262 /* various error bounds and condition numbers corresponding to the */ 00263 /* componentwise relative error, which is defined as follows: */ 00264 00265 /* Componentwise relative error in the ith solution vector: */ 00266 /* abs(XTRUE(j,i) - X(j,i)) */ 00267 /* max_j ---------------------- */ 00268 /* abs(X(j,i)) */ 00269 00270 /* The array is indexed by the right-hand side i (on which the */ 00271 /* componentwise relative error depends), and the type of error */ 00272 /* information as described below. There currently are up to three */ 00273 /* pieces of information returned for each right-hand side. If */ 00274 /* componentwise accuracy is not requested (PARAMS(3) = 0.0), then */ 00275 /* ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most */ 00276 /* the first (:,N_ERR_BNDS) entries are returned. */ 00277 00278 /* The first index in ERR_BNDS_COMP(i,:) corresponds to the ith */ 00279 /* right-hand side. */ 00280 00281 /* The second index in ERR_BNDS_COMP(:,err) contains the following */ 00282 /* three fields: */ 00283 /* err = 1 "Trust/don't trust" boolean. Trust the answer if the */ 00284 /* reciprocal condition number is less than the threshold */ 00285 /* sqrt(n) * dlamch('Epsilon'). */ 00286 00287 /* err = 2 "Guaranteed" error bound: The estimated forward error, */ 00288 /* almost certainly within a factor of 10 of the true error */ 00289 /* so long as the next entry is greater than the threshold */ 00290 /* sqrt(n) * dlamch('Epsilon'). This error bound should only */ 00291 /* be trusted if the previous boolean is true. */ 00292 00293 /* err = 3 Reciprocal condition number: Estimated componentwise */ 00294 /* reciprocal condition number. Compared with the threshold */ 00295 /* sqrt(n) * dlamch('Epsilon') to determine if the error */ 00296 /* estimate is "guaranteed". These reciprocal condition */ 00297 /* numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some */ 00298 /* appropriately scaled matrix Z. */ 00299 /* Let Z = S*(A*diag(x)), where x is the solution for the */ 00300 /* current right-hand side and S scales each row of */ 00301 /* A*diag(x) by a power of the radix so all absolute row */ 00302 /* sums of Z are approximately 1. */ 00303 00304 /* See Lapack Working Note 165 for further details and extra */ 00305 /* cautions. */ 00306 00307 /* NPARAMS (input) INTEGER */ 00308 /* Specifies the number of parameters set in PARAMS. If .LE. 0, the */ 00309 /* PARAMS array is never referenced and default values are used. */ 00310 00311 /* PARAMS (input / output) DOUBLE PRECISION array, dimension NPARAMS */ 00312 /* Specifies algorithm parameters. If an entry is .LT. 0.0, then */ 00313 /* that entry will be filled with default value used for that */ 00314 /* parameter. Only positions up to NPARAMS are accessed; defaults */ 00315 /* are used for higher-numbered parameters. */ 00316 00317 /* PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative */ 00318 /* refinement or not. */ 00319 /* Default: 1.0D+0 */ 00320 /* = 0.0 : No refinement is performed, and no error bounds are */ 00321 /* computed. */ 00322 /* = 1.0 : Use the double-precision refinement algorithm, */ 00323 /* possibly with doubled-single computations if the */ 00324 /* compilation environment does not support DOUBLE */ 00325 /* PRECISION. */ 00326 /* (other values are reserved for future use) */ 00327 00328 /* PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual */ 00329 /* computations allowed for refinement. */ 00330 /* Default: 10 */ 00331 /* Aggressive: Set to 100 to permit convergence using approximate */ 00332 /* factorizations or factorizations other than LU. If */ 00333 /* the factorization uses a technique other than */ 00334 /* Gaussian elimination, the guarantees in */ 00335 /* err_bnds_norm and err_bnds_comp may no longer be */ 00336 /* trustworthy. */ 00337 00338 /* PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code */ 00339 /* will attempt to find a solution with small componentwise */ 00340 /* relative error in the double-precision algorithm. Positive */ 00341 /* is true, 0.0 is false. */ 00342 /* Default: 1.0 (attempt componentwise convergence) */ 00343 00344 /* WORK (workspace) COMPLEX*16 array, dimension (2*N) */ 00345 00346 /* RWORK (workspace) DOUBLE PRECISION array, dimension (2*N) */ 00347 00348 /* INFO (output) INTEGER */ 00349 /* = 0: Successful exit. The solution to every right-hand side is */ 00350 /* guaranteed. */ 00351 /* < 0: If INFO = -i, the i-th argument had an illegal value */ 00352 /* > 0 and <= N: U(INFO,INFO) is exactly zero. The factorization */ 00353 /* has been completed, but the factor U is exactly singular, so */ 00354 /* the solution and error bounds could not be computed. RCOND = 0 */ 00355 /* is returned. */ 00356 /* = N+J: The solution corresponding to the Jth right-hand side is */ 00357 /* not guaranteed. The solutions corresponding to other right- */ 00358 /* hand sides K with K > J may not be guaranteed as well, but */ 00359 /* only the first such right-hand side is reported. If a small */ 00360 /* componentwise error is not requested (PARAMS(3) = 0.0) then */ 00361 /* the Jth right-hand side is the first with a normwise error */ 00362 /* bound that is not guaranteed (the smallest J such */ 00363 /* that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0) */ 00364 /* the Jth right-hand side is the first with either a normwise or */ 00365 /* componentwise error bound that is not guaranteed (the smallest */ 00366 /* J such that either ERR_BNDS_NORM(J,1) = 0.0 or */ 00367 /* ERR_BNDS_COMP(J,1) = 0.0). See the definition of */ 00368 /* ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information */ 00369 /* about all of the right-hand sides check ERR_BNDS_NORM or */ 00370 /* ERR_BNDS_COMP. */ 00371 00372 /* ================================================================== */ 00373 00374 /* .. Parameters .. */ 00375 /* .. */ 00376 /* .. Local Scalars .. */ 00377 /* .. */ 00378 /* .. External Subroutines .. */ 00379 /* .. */ 00380 /* .. Intrinsic Functions .. */ 00381 /* .. */ 00382 /* .. External Functions .. */ 00383 /* .. */ 00384 /* .. Executable Statements .. */ 00385 00386 /* Check the input parameters. */ 00387 00388 /* Parameter adjustments */ 00389 err_bnds_comp_dim1 = *nrhs; 00390 err_bnds_comp_offset = 1 + err_bnds_comp_dim1; 00391 err_bnds_comp__ -= err_bnds_comp_offset; 00392 err_bnds_norm_dim1 = *nrhs; 00393 err_bnds_norm_offset = 1 + err_bnds_norm_dim1; 00394 err_bnds_norm__ -= err_bnds_norm_offset; 00395 a_dim1 = *lda; 00396 a_offset = 1 + a_dim1; 00397 a -= a_offset; 00398 af_dim1 = *ldaf; 00399 af_offset = 1 + af_dim1; 00400 af -= af_offset; 00401 --ipiv; 00402 --r__; 00403 --c__; 00404 b_dim1 = *ldb; 00405 b_offset = 1 + b_dim1; 00406 b -= b_offset; 00407 x_dim1 = *ldx; 00408 x_offset = 1 + x_dim1; 00409 x -= x_offset; 00410 --berr; 00411 --params; 00412 --work; 00413 --rwork; 00414 00415 /* Function Body */ 00416 *info = 0; 00417 trans_type__ = ilatrans_(trans); 00418 ref_type__ = 1; 00419 if (*nparams >= 1) { 00420 if (params[1] < 0.) { 00421 params[1] = 1.; 00422 } else { 00423 ref_type__ = (integer) params[1]; 00424 } 00425 } 00426 00427 /* Set default parameters. */ 00428 00429 illrcond_thresh__ = (doublereal) (*n) * dlamch_("Epsilon"); 00430 ithresh = 10; 00431 rthresh = .5; 00432 unstable_thresh__ = .25; 00433 ignore_cwise__ = FALSE_; 00434 00435 if (*nparams >= 2) { 00436 if (params[2] < 0.) { 00437 params[2] = (doublereal) ithresh; 00438 } else { 00439 ithresh = (integer) params[2]; 00440 } 00441 } 00442 if (*nparams >= 3) { 00443 if (params[3] < 0.) { 00444 if (ignore_cwise__) { 00445 params[3] = 0.; 00446 } else { 00447 params[3] = 1.; 00448 } 00449 } else { 00450 ignore_cwise__ = params[3] == 0.; 00451 } 00452 } 00453 if (ref_type__ == 0 || *n_err_bnds__ == 0) { 00454 n_norms__ = 0; 00455 } else if (ignore_cwise__) { 00456 n_norms__ = 1; 00457 } else { 00458 n_norms__ = 2; 00459 } 00460 00461 notran = lsame_(trans, "N"); 00462 rowequ = lsame_(equed, "R") || lsame_(equed, "B"); 00463 colequ = lsame_(equed, "C") || lsame_(equed, "B"); 00464 00465 /* Test input parameters. */ 00466 00467 if (trans_type__ == -1) { 00468 *info = -1; 00469 } else if (! rowequ && ! colequ && ! lsame_(equed, "N")) { 00470 *info = -2; 00471 } else if (*n < 0) { 00472 *info = -3; 00473 } else if (*nrhs < 0) { 00474 *info = -4; 00475 } else if (*lda < max(1,*n)) { 00476 *info = -6; 00477 } else if (*ldaf < max(1,*n)) { 00478 *info = -8; 00479 } else if (*ldb < max(1,*n)) { 00480 *info = -13; 00481 } else if (*ldx < max(1,*n)) { 00482 *info = -15; 00483 } 00484 if (*info != 0) { 00485 i__1 = -(*info); 00486 xerbla_("ZGERFSX", &i__1); 00487 return 0; 00488 } 00489 00490 /* Quick return if possible. */ 00491 00492 if (*n == 0 || *nrhs == 0) { 00493 *rcond = 1.; 00494 i__1 = *nrhs; 00495 for (j = 1; j <= i__1; ++j) { 00496 berr[j] = 0.; 00497 if (*n_err_bnds__ >= 1) { 00498 err_bnds_norm__[j + err_bnds_norm_dim1] = 1.; 00499 err_bnds_comp__[j + err_bnds_comp_dim1] = 1.; 00500 } else if (*n_err_bnds__ >= 2) { 00501 err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = 0.; 00502 err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = 0.; 00503 } else if (*n_err_bnds__ >= 3) { 00504 err_bnds_norm__[j + err_bnds_norm_dim1 * 3] = 1.; 00505 err_bnds_comp__[j + err_bnds_comp_dim1 * 3] = 1.; 00506 } 00507 } 00508 return 0; 00509 } 00510 00511 /* Default to failure. */ 00512 00513 *rcond = 0.; 00514 i__1 = *nrhs; 00515 for (j = 1; j <= i__1; ++j) { 00516 berr[j] = 1.; 00517 if (*n_err_bnds__ >= 1) { 00518 err_bnds_norm__[j + err_bnds_norm_dim1] = 1.; 00519 err_bnds_comp__[j + err_bnds_comp_dim1] = 1.; 00520 } else if (*n_err_bnds__ >= 2) { 00521 err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = 1.; 00522 err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = 1.; 00523 } else if (*n_err_bnds__ >= 3) { 00524 err_bnds_norm__[j + err_bnds_norm_dim1 * 3] = 0.; 00525 err_bnds_comp__[j + err_bnds_comp_dim1 * 3] = 0.; 00526 } 00527 } 00528 00529 /* Compute the norm of A and the reciprocal of the condition */ 00530 /* number of A. */ 00531 00532 if (notran) { 00533 *(unsigned char *)norm = 'I'; 00534 } else { 00535 *(unsigned char *)norm = '1'; 00536 } 00537 anorm = zlange_(norm, n, n, &a[a_offset], lda, &rwork[1]); 00538 zgecon_(norm, n, &af[af_offset], ldaf, &anorm, rcond, &work[1], &rwork[1], 00539 info); 00540 00541 /* Perform refinement on each right-hand side */ 00542 00543 if (ref_type__ != 0) { 00544 prec_type__ = ilaprec_("E"); 00545 if (notran) { 00546 zla_gerfsx_extended__(&prec_type__, &trans_type__, n, nrhs, &a[ 00547 a_offset], lda, &af[af_offset], ldaf, &ipiv[1], &colequ, & 00548 c__[1], &b[b_offset], ldb, &x[x_offset], ldx, &berr[1], & 00549 n_norms__, &err_bnds_norm__[err_bnds_norm_offset], & 00550 err_bnds_comp__[err_bnds_comp_offset], &work[1], &rwork[1] 00551 , &work[*n + 1], (doublecomplex*)(&rwork[1]), rcond, &ithresh, &rthresh, & 00552 unstable_thresh__, &ignore_cwise__, info); 00553 } else { 00554 zla_gerfsx_extended__(&prec_type__, &trans_type__, n, nrhs, &a[ 00555 a_offset], lda, &af[af_offset], ldaf, &ipiv[1], &rowequ, & 00556 r__[1], &b[b_offset], ldb, &x[x_offset], ldx, &berr[1], & 00557 n_norms__, &err_bnds_norm__[err_bnds_norm_offset], & 00558 err_bnds_comp__[err_bnds_comp_offset], &work[1], &rwork[1] 00559 , &work[*n + 1], (doublecomplex *)(&rwork[1]), rcond, &ithresh, &rthresh, & 00560 unstable_thresh__, &ignore_cwise__, info); 00561 } 00562 } 00563 /* Computing MAX */ 00564 d__1 = 10., d__2 = sqrt((doublereal) (*n)); 00565 err_lbnd__ = max(d__1,d__2) * dlamch_("Epsilon"); 00566 if (*n_err_bnds__ >= 1 && n_norms__ >= 1) { 00567 00568 /* Compute scaled normwise condition number cond(A*C). */ 00569 00570 if (colequ && notran) { 00571 rcond_tmp__ = zla_gercond_c__(trans, n, &a[a_offset], lda, &af[ 00572 af_offset], ldaf, &ipiv[1], &c__[1], &c_true, info, &work[ 00573 1], &rwork[1], (ftnlen)1); 00574 } else if (rowequ && ! notran) { 00575 rcond_tmp__ = zla_gercond_c__(trans, n, &a[a_offset], lda, &af[ 00576 af_offset], ldaf, &ipiv[1], &r__[1], &c_true, info, &work[ 00577 1], &rwork[1], (ftnlen)1); 00578 } else { 00579 rcond_tmp__ = zla_gercond_c__(trans, n, &a[a_offset], lda, &af[ 00580 af_offset], ldaf, &ipiv[1], &c__[1], &c_false, info, & 00581 work[1], &rwork[1], (ftnlen)1); 00582 } 00583 i__1 = *nrhs; 00584 for (j = 1; j <= i__1; ++j) { 00585 00586 /* Cap the error at 1.0. */ 00587 00588 if (*n_err_bnds__ >= 2 && err_bnds_norm__[j + (err_bnds_norm_dim1 00589 << 1)] > 1.) { 00590 err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = 1.; 00591 } 00592 00593 /* Threshold the error (see LAWN). */ 00594 00595 if (rcond_tmp__ < illrcond_thresh__) { 00596 err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = 1.; 00597 err_bnds_norm__[j + err_bnds_norm_dim1] = 0.; 00598 if (*info <= *n) { 00599 *info = *n + j; 00600 } 00601 } else if (err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] < 00602 err_lbnd__) { 00603 err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = err_lbnd__; 00604 err_bnds_norm__[j + err_bnds_norm_dim1] = 1.; 00605 } 00606 00607 /* Save the condition number. */ 00608 00609 if (*n_err_bnds__ >= 3) { 00610 err_bnds_norm__[j + err_bnds_norm_dim1 * 3] = rcond_tmp__; 00611 } 00612 } 00613 } 00614 if (*n_err_bnds__ >= 1 && n_norms__ >= 2) { 00615 00616 /* Compute componentwise condition number cond(A*diag(Y(:,J))) for */ 00617 /* each right-hand side using the current solution as an estimate of */ 00618 /* the true solution. If the componentwise error estimate is too */ 00619 /* large, then the solution is a lousy estimate of truth and the */ 00620 /* estimated RCOND may be too optimistic. To avoid misleading users, */ 00621 /* the inverse condition number is set to 0.0 when the estimated */ 00622 /* cwise error is at least CWISE_WRONG. */ 00623 00624 cwise_wrong__ = sqrt(dlamch_("Epsilon")); 00625 i__1 = *nrhs; 00626 for (j = 1; j <= i__1; ++j) { 00627 if (err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] < 00628 cwise_wrong__) { 00629 rcond_tmp__ = zla_gercond_x__(trans, n, &a[a_offset], lda, & 00630 af[af_offset], ldaf, &ipiv[1], &x[j * x_dim1 + 1], 00631 info, &work[1], &rwork[1], (ftnlen)1); 00632 } else { 00633 rcond_tmp__ = 0.; 00634 } 00635 00636 /* Cap the error at 1.0. */ 00637 00638 if (*n_err_bnds__ >= 2 && err_bnds_comp__[j + (err_bnds_comp_dim1 00639 << 1)] > 1.) { 00640 err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = 1.; 00641 } 00642 00643 /* Threshold the error (see LAWN). */ 00644 00645 if (rcond_tmp__ < illrcond_thresh__) { 00646 err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = 1.; 00647 err_bnds_comp__[j + err_bnds_comp_dim1] = 0.; 00648 if (params[3] == 1. && *info < *n + j) { 00649 *info = *n + j; 00650 } 00651 } else if (err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] < 00652 err_lbnd__) { 00653 err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = err_lbnd__; 00654 err_bnds_comp__[j + err_bnds_comp_dim1] = 1.; 00655 } 00656 00657 /* Save the condition number. */ 00658 00659 if (*n_err_bnds__ >= 3) { 00660 err_bnds_comp__[j + err_bnds_comp_dim1 * 3] = rcond_tmp__; 00661 } 00662 } 00663 } 00664 00665 return 0; 00666 00667 /* End of ZGERFSX */ 00668 00669 } /* zgerfsx_ */