zgeqr2.c
Go to the documentation of this file.
00001 /* zgeqr2.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Table of constant values */
00017 
00018 static integer c__1 = 1;
00019 
00020 /* Subroutine */ int zgeqr2_(integer *m, integer *n, doublecomplex *a, 
00021         integer *lda, doublecomplex *tau, doublecomplex *work, integer *info)
00022 {
00023     /* System generated locals */
00024     integer a_dim1, a_offset, i__1, i__2, i__3;
00025     doublecomplex z__1;
00026 
00027     /* Builtin functions */
00028     void d_cnjg(doublecomplex *, doublecomplex *);
00029 
00030     /* Local variables */
00031     integer i__, k;
00032     doublecomplex alpha;
00033     extern /* Subroutine */ int zlarf_(char *, integer *, integer *, 
00034             doublecomplex *, integer *, doublecomplex *, doublecomplex *, 
00035             integer *, doublecomplex *), xerbla_(char *, integer *), zlarfp_(integer *, doublecomplex *, doublecomplex *, 
00036             integer *, doublecomplex *);
00037 
00038 
00039 /*  -- LAPACK routine (version 3.2) -- */
00040 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00041 /*     November 2006 */
00042 
00043 /*     .. Scalar Arguments .. */
00044 /*     .. */
00045 /*     .. Array Arguments .. */
00046 /*     .. */
00047 
00048 /*  Purpose */
00049 /*  ======= */
00050 
00051 /*  ZGEQR2 computes a QR factorization of a complex m by n matrix A: */
00052 /*  A = Q * R. */
00053 
00054 /*  Arguments */
00055 /*  ========= */
00056 
00057 /*  M       (input) INTEGER */
00058 /*          The number of rows of the matrix A.  M >= 0. */
00059 
00060 /*  N       (input) INTEGER */
00061 /*          The number of columns of the matrix A.  N >= 0. */
00062 
00063 /*  A       (input/output) COMPLEX*16 array, dimension (LDA,N) */
00064 /*          On entry, the m by n matrix A. */
00065 /*          On exit, the elements on and above the diagonal of the array */
00066 /*          contain the min(m,n) by n upper trapezoidal matrix R (R is */
00067 /*          upper triangular if m >= n); the elements below the diagonal, */
00068 /*          with the array TAU, represent the unitary matrix Q as a */
00069 /*          product of elementary reflectors (see Further Details). */
00070 
00071 /*  LDA     (input) INTEGER */
00072 /*          The leading dimension of the array A.  LDA >= max(1,M). */
00073 
00074 /*  TAU     (output) COMPLEX*16 array, dimension (min(M,N)) */
00075 /*          The scalar factors of the elementary reflectors (see Further */
00076 /*          Details). */
00077 
00078 /*  WORK    (workspace) COMPLEX*16 array, dimension (N) */
00079 
00080 /*  INFO    (output) INTEGER */
00081 /*          = 0: successful exit */
00082 /*          < 0: if INFO = -i, the i-th argument had an illegal value */
00083 
00084 /*  Further Details */
00085 /*  =============== */
00086 
00087 /*  The matrix Q is represented as a product of elementary reflectors */
00088 
00089 /*     Q = H(1) H(2) . . . H(k), where k = min(m,n). */
00090 
00091 /*  Each H(i) has the form */
00092 
00093 /*     H(i) = I - tau * v * v' */
00094 
00095 /*  where tau is a complex scalar, and v is a complex vector with */
00096 /*  v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), */
00097 /*  and tau in TAU(i). */
00098 
00099 /*  ===================================================================== */
00100 
00101 /*     .. Parameters .. */
00102 /*     .. */
00103 /*     .. Local Scalars .. */
00104 /*     .. */
00105 /*     .. External Subroutines .. */
00106 /*     .. */
00107 /*     .. Intrinsic Functions .. */
00108 /*     .. */
00109 /*     .. Executable Statements .. */
00110 
00111 /*     Test the input arguments */
00112 
00113     /* Parameter adjustments */
00114     a_dim1 = *lda;
00115     a_offset = 1 + a_dim1;
00116     a -= a_offset;
00117     --tau;
00118     --work;
00119 
00120     /* Function Body */
00121     *info = 0;
00122     if (*m < 0) {
00123         *info = -1;
00124     } else if (*n < 0) {
00125         *info = -2;
00126     } else if (*lda < max(1,*m)) {
00127         *info = -4;
00128     }
00129     if (*info != 0) {
00130         i__1 = -(*info);
00131         xerbla_("ZGEQR2", &i__1);
00132         return 0;
00133     }
00134 
00135     k = min(*m,*n);
00136 
00137     i__1 = k;
00138     for (i__ = 1; i__ <= i__1; ++i__) {
00139 
00140 /*        Generate elementary reflector H(i) to annihilate A(i+1:m,i) */
00141 
00142         i__2 = *m - i__ + 1;
00143 /* Computing MIN */
00144         i__3 = i__ + 1;
00145         zlarfp_(&i__2, &a[i__ + i__ * a_dim1], &a[min(i__3, *m)+ i__ * a_dim1]
00146 , &c__1, &tau[i__]);
00147         if (i__ < *n) {
00148 
00149 /*           Apply H(i)' to A(i:m,i+1:n) from the left */
00150 
00151             i__2 = i__ + i__ * a_dim1;
00152             alpha.r = a[i__2].r, alpha.i = a[i__2].i;
00153             i__2 = i__ + i__ * a_dim1;
00154             a[i__2].r = 1., a[i__2].i = 0.;
00155             i__2 = *m - i__ + 1;
00156             i__3 = *n - i__;
00157             d_cnjg(&z__1, &tau[i__]);
00158             zlarf_("Left", &i__2, &i__3, &a[i__ + i__ * a_dim1], &c__1, &z__1, 
00159                      &a[i__ + (i__ + 1) * a_dim1], lda, &work[1]);
00160             i__2 = i__ + i__ * a_dim1;
00161             a[i__2].r = alpha.r, a[i__2].i = alpha.i;
00162         }
00163 /* L10: */
00164     }
00165     return 0;
00166 
00167 /*     End of ZGEQR2 */
00168 
00169 } /* zgeqr2_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:56:33