00001 /* zgehd2.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static integer c__1 = 1; 00019 00020 /* Subroutine */ int zgehd2_(integer *n, integer *ilo, integer *ihi, 00021 doublecomplex *a, integer *lda, doublecomplex *tau, doublecomplex * 00022 work, integer *info) 00023 { 00024 /* System generated locals */ 00025 integer a_dim1, a_offset, i__1, i__2, i__3; 00026 doublecomplex z__1; 00027 00028 /* Builtin functions */ 00029 void d_cnjg(doublecomplex *, doublecomplex *); 00030 00031 /* Local variables */ 00032 integer i__; 00033 doublecomplex alpha; 00034 extern /* Subroutine */ int zlarf_(char *, integer *, integer *, 00035 doublecomplex *, integer *, doublecomplex *, doublecomplex *, 00036 integer *, doublecomplex *), xerbla_(char *, integer *), zlarfg_(integer *, doublecomplex *, doublecomplex *, 00037 integer *, doublecomplex *); 00038 00039 00040 /* -- LAPACK routine (version 3.2) -- */ 00041 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00042 /* November 2006 */ 00043 00044 /* .. Scalar Arguments .. */ 00045 /* .. */ 00046 /* .. Array Arguments .. */ 00047 /* .. */ 00048 00049 /* Purpose */ 00050 /* ======= */ 00051 00052 /* ZGEHD2 reduces a complex general matrix A to upper Hessenberg form H */ 00053 /* by a unitary similarity transformation: Q' * A * Q = H . */ 00054 00055 /* Arguments */ 00056 /* ========= */ 00057 00058 /* N (input) INTEGER */ 00059 /* The order of the matrix A. N >= 0. */ 00060 00061 /* ILO (input) INTEGER */ 00062 /* IHI (input) INTEGER */ 00063 /* It is assumed that A is already upper triangular in rows */ 00064 /* and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally */ 00065 /* set by a previous call to ZGEBAL; otherwise they should be */ 00066 /* set to 1 and N respectively. See Further Details. */ 00067 /* 1 <= ILO <= IHI <= max(1,N). */ 00068 00069 /* A (input/output) COMPLEX*16 array, dimension (LDA,N) */ 00070 /* On entry, the n by n general matrix to be reduced. */ 00071 /* On exit, the upper triangle and the first subdiagonal of A */ 00072 /* are overwritten with the upper Hessenberg matrix H, and the */ 00073 /* elements below the first subdiagonal, with the array TAU, */ 00074 /* represent the unitary matrix Q as a product of elementary */ 00075 /* reflectors. See Further Details. */ 00076 00077 /* LDA (input) INTEGER */ 00078 /* The leading dimension of the array A. LDA >= max(1,N). */ 00079 00080 /* TAU (output) COMPLEX*16 array, dimension (N-1) */ 00081 /* The scalar factors of the elementary reflectors (see Further */ 00082 /* Details). */ 00083 00084 /* WORK (workspace) COMPLEX*16 array, dimension (N) */ 00085 00086 /* INFO (output) INTEGER */ 00087 /* = 0: successful exit */ 00088 /* < 0: if INFO = -i, the i-th argument had an illegal value. */ 00089 00090 /* Further Details */ 00091 /* =============== */ 00092 00093 /* The matrix Q is represented as a product of (ihi-ilo) elementary */ 00094 /* reflectors */ 00095 00096 /* Q = H(ilo) H(ilo+1) . . . H(ihi-1). */ 00097 00098 /* Each H(i) has the form */ 00099 00100 /* H(i) = I - tau * v * v' */ 00101 00102 /* where tau is a complex scalar, and v is a complex vector with */ 00103 /* v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on */ 00104 /* exit in A(i+2:ihi,i), and tau in TAU(i). */ 00105 00106 /* The contents of A are illustrated by the following example, with */ 00107 /* n = 7, ilo = 2 and ihi = 6: */ 00108 00109 /* on entry, on exit, */ 00110 00111 /* ( a a a a a a a ) ( a a h h h h a ) */ 00112 /* ( a a a a a a ) ( a h h h h a ) */ 00113 /* ( a a a a a a ) ( h h h h h h ) */ 00114 /* ( a a a a a a ) ( v2 h h h h h ) */ 00115 /* ( a a a a a a ) ( v2 v3 h h h h ) */ 00116 /* ( a a a a a a ) ( v2 v3 v4 h h h ) */ 00117 /* ( a ) ( a ) */ 00118 00119 /* where a denotes an element of the original matrix A, h denotes a */ 00120 /* modified element of the upper Hessenberg matrix H, and vi denotes an */ 00121 /* element of the vector defining H(i). */ 00122 00123 /* ===================================================================== */ 00124 00125 /* .. Parameters .. */ 00126 /* .. */ 00127 /* .. Local Scalars .. */ 00128 /* .. */ 00129 /* .. External Subroutines .. */ 00130 /* .. */ 00131 /* .. Intrinsic Functions .. */ 00132 /* .. */ 00133 /* .. Executable Statements .. */ 00134 00135 /* Test the input parameters */ 00136 00137 /* Parameter adjustments */ 00138 a_dim1 = *lda; 00139 a_offset = 1 + a_dim1; 00140 a -= a_offset; 00141 --tau; 00142 --work; 00143 00144 /* Function Body */ 00145 *info = 0; 00146 if (*n < 0) { 00147 *info = -1; 00148 } else if (*ilo < 1 || *ilo > max(1,*n)) { 00149 *info = -2; 00150 } else if (*ihi < min(*ilo,*n) || *ihi > *n) { 00151 *info = -3; 00152 } else if (*lda < max(1,*n)) { 00153 *info = -5; 00154 } 00155 if (*info != 0) { 00156 i__1 = -(*info); 00157 xerbla_("ZGEHD2", &i__1); 00158 return 0; 00159 } 00160 00161 i__1 = *ihi - 1; 00162 for (i__ = *ilo; i__ <= i__1; ++i__) { 00163 00164 /* Compute elementary reflector H(i) to annihilate A(i+2:ihi,i) */ 00165 00166 i__2 = i__ + 1 + i__ * a_dim1; 00167 alpha.r = a[i__2].r, alpha.i = a[i__2].i; 00168 i__2 = *ihi - i__; 00169 /* Computing MIN */ 00170 i__3 = i__ + 2; 00171 zlarfg_(&i__2, &alpha, &a[min(i__3, *n)+ i__ * a_dim1], &c__1, &tau[ 00172 i__]); 00173 i__2 = i__ + 1 + i__ * a_dim1; 00174 a[i__2].r = 1., a[i__2].i = 0.; 00175 00176 /* Apply H(i) to A(1:ihi,i+1:ihi) from the right */ 00177 00178 i__2 = *ihi - i__; 00179 zlarf_("Right", ihi, &i__2, &a[i__ + 1 + i__ * a_dim1], &c__1, &tau[ 00180 i__], &a[(i__ + 1) * a_dim1 + 1], lda, &work[1]); 00181 00182 /* Apply H(i)' to A(i+1:ihi,i+1:n) from the left */ 00183 00184 i__2 = *ihi - i__; 00185 i__3 = *n - i__; 00186 d_cnjg(&z__1, &tau[i__]); 00187 zlarf_("Left", &i__2, &i__3, &a[i__ + 1 + i__ * a_dim1], &c__1, &z__1, 00188 &a[i__ + 1 + (i__ + 1) * a_dim1], lda, &work[1]); 00189 00190 i__2 = i__ + 1 + i__ * a_dim1; 00191 a[i__2].r = alpha.r, a[i__2].i = alpha.i; 00192 /* L10: */ 00193 } 00194 00195 return 0; 00196 00197 /* End of ZGEHD2 */ 00198 00199 } /* zgehd2_ */