zgbt02.c
Go to the documentation of this file.
00001 /* zgbt02.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Table of constant values */
00017 
00018 static doublecomplex c_b1 = {1.,0.};
00019 static integer c__1 = 1;
00020 
00021 /* Subroutine */ int zgbt02_(char *trans, integer *m, integer *n, integer *kl, 
00022          integer *ku, integer *nrhs, doublecomplex *a, integer *lda, 
00023         doublecomplex *x, integer *ldx, doublecomplex *b, integer *ldb, 
00024         doublereal *resid)
00025 {
00026     /* System generated locals */
00027     integer a_dim1, a_offset, b_dim1, b_offset, x_dim1, x_offset, i__1, i__2, 
00028             i__3;
00029     doublereal d__1, d__2;
00030     doublecomplex z__1;
00031 
00032     /* Local variables */
00033     integer j, i1, i2, n1, kd;
00034     doublereal eps;
00035     extern logical lsame_(char *, char *);
00036     doublereal anorm, bnorm;
00037     extern /* Subroutine */ int zgbmv_(char *, integer *, integer *, integer *
00038 , integer *, doublecomplex *, doublecomplex *, integer *, 
00039             doublecomplex *, integer *, doublecomplex *, doublecomplex *, 
00040             integer *);
00041     doublereal xnorm;
00042     extern doublereal dlamch_(char *), dzasum_(integer *, 
00043             doublecomplex *, integer *);
00044 
00045 
00046 /*  -- LAPACK test routine (version 3.1) -- */
00047 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00048 /*     November 2006 */
00049 
00050 /*     .. Scalar Arguments .. */
00051 /*     .. */
00052 /*     .. Array Arguments .. */
00053 /*     .. */
00054 
00055 /*  Purpose */
00056 /*  ======= */
00057 
00058 /*  ZGBT02 computes the residual for a solution of a banded system of */
00059 /*  equations  A*x = b  or  A'*x = b: */
00060 /*     RESID = norm( B - A*X ) / ( norm(A) * norm(X) * EPS). */
00061 /*  where EPS is the machine precision. */
00062 
00063 /*  Arguments */
00064 /*  ========= */
00065 
00066 /*  TRANS   (input) CHARACTER*1 */
00067 /*          Specifies the form of the system of equations: */
00068 /*          = 'N':  A *x = b */
00069 /*          = 'T':  A'*x = b, where A' is the transpose of A */
00070 /*          = 'C':  A'*x = b, where A' is the transpose of A */
00071 
00072 /*  M       (input) INTEGER */
00073 /*          The number of rows of the matrix A.  M >= 0. */
00074 
00075 /*  N       (input) INTEGER */
00076 /*          The number of columns of the matrix A.  N >= 0. */
00077 
00078 /*  KL      (input) INTEGER */
00079 /*          The number of subdiagonals within the band of A.  KL >= 0. */
00080 
00081 /*  KU      (input) INTEGER */
00082 /*          The number of superdiagonals within the band of A.  KU >= 0. */
00083 
00084 /*  NRHS    (input) INTEGER */
00085 /*          The number of columns of B.  NRHS >= 0. */
00086 
00087 /*  A       (input) COMPLEX*16 array, dimension (LDA,N) */
00088 /*          The original matrix A in band storage, stored in rows 1 to */
00089 /*          KL+KU+1. */
00090 
00091 /*  LDA     (input) INTEGER */
00092 /*          The leading dimension of the array A.  LDA >= max(1,KL+KU+1). */
00093 
00094 /*  X       (input) COMPLEX*16 array, dimension (LDX,NRHS) */
00095 /*          The computed solution vectors for the system of linear */
00096 /*          equations. */
00097 
00098 /*  LDX     (input) INTEGER */
00099 /*          The leading dimension of the array X.  If TRANS = 'N', */
00100 /*          LDX >= max(1,N); if TRANS = 'T' or 'C', LDX >= max(1,M). */
00101 
00102 /*  B       (input/output) COMPLEX*16 array, dimension (LDB,NRHS) */
00103 /*          On entry, the right hand side vectors for the system of */
00104 /*          linear equations. */
00105 /*          On exit, B is overwritten with the difference B - A*X. */
00106 
00107 /*  LDB     (input) INTEGER */
00108 /*          The leading dimension of the array B.  IF TRANS = 'N', */
00109 /*          LDB >= max(1,M); if TRANS = 'T' or 'C', LDB >= max(1,N). */
00110 
00111 /*  RESID   (output) DOUBLE PRECISION */
00112 /*          The maximum over the number of right hand sides of */
00113 /*          norm(B - A*X) / ( norm(A) * norm(X) * EPS ). */
00114 
00115 /*  ===================================================================== */
00116 
00117 /*     .. Parameters .. */
00118 /*     .. */
00119 /*     .. Local Scalars .. */
00120 /*     .. */
00121 /*     .. External Functions .. */
00122 /*     .. */
00123 /*     .. External Subroutines .. */
00124 /*     .. */
00125 /*     .. Intrinsic Functions .. */
00126 /*     .. */
00127 /*     .. Executable Statements .. */
00128 
00129 /*     Quick return if N = 0 pr NRHS = 0 */
00130 
00131     /* Parameter adjustments */
00132     a_dim1 = *lda;
00133     a_offset = 1 + a_dim1;
00134     a -= a_offset;
00135     x_dim1 = *ldx;
00136     x_offset = 1 + x_dim1;
00137     x -= x_offset;
00138     b_dim1 = *ldb;
00139     b_offset = 1 + b_dim1;
00140     b -= b_offset;
00141 
00142     /* Function Body */
00143     if (*m <= 0 || *n <= 0 || *nrhs <= 0) {
00144         *resid = 0.;
00145         return 0;
00146     }
00147 
00148 /*     Exit with RESID = 1/EPS if ANORM = 0. */
00149 
00150     eps = dlamch_("Epsilon");
00151     kd = *ku + 1;
00152     anorm = 0.;
00153     i__1 = *n;
00154     for (j = 1; j <= i__1; ++j) {
00155 /* Computing MAX */
00156         i__2 = kd + 1 - j;
00157         i1 = max(i__2,1);
00158 /* Computing MIN */
00159         i__2 = kd + *m - j, i__3 = *kl + kd;
00160         i2 = min(i__2,i__3);
00161 /* Computing MAX */
00162         i__2 = i2 - i1 + 1;
00163         d__1 = anorm, d__2 = dzasum_(&i__2, &a[i1 + j * a_dim1], &c__1);
00164         anorm = max(d__1,d__2);
00165 /* L10: */
00166     }
00167     if (anorm <= 0.) {
00168         *resid = 1. / eps;
00169         return 0;
00170     }
00171 
00172     if (lsame_(trans, "T") || lsame_(trans, "C")) {
00173         n1 = *n;
00174     } else {
00175         n1 = *m;
00176     }
00177 
00178 /*     Compute  B - A*X (or  B - A'*X ) */
00179 
00180     i__1 = *nrhs;
00181     for (j = 1; j <= i__1; ++j) {
00182         z__1.r = -1., z__1.i = -0.;
00183         zgbmv_(trans, m, n, kl, ku, &z__1, &a[a_offset], lda, &x[j * x_dim1 + 
00184                 1], &c__1, &c_b1, &b[j * b_dim1 + 1], &c__1);
00185 /* L20: */
00186     }
00187 
00188 /*     Compute the maximum over the number of right hand sides of */
00189 /*        norm(B - A*X) / ( norm(A) * norm(X) * EPS ). */
00190 
00191     *resid = 0.;
00192     i__1 = *nrhs;
00193     for (j = 1; j <= i__1; ++j) {
00194         bnorm = dzasum_(&n1, &b[j * b_dim1 + 1], &c__1);
00195         xnorm = dzasum_(&n1, &x[j * x_dim1 + 1], &c__1);
00196         if (xnorm <= 0.) {
00197             *resid = 1. / eps;
00198         } else {
00199 /* Computing MAX */
00200             d__1 = *resid, d__2 = bnorm / anorm / xnorm / eps;
00201             *resid = max(d__1,d__2);
00202         }
00203 /* L30: */
00204     }
00205 
00206     return 0;
00207 
00208 /*     End of ZGBT02 */
00209 
00210 } /* zgbt02_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:56:30