00001 /* zgbsvxx.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Subroutine */ int zgbsvxx_(char *fact, char *trans, integer *n, integer * 00017 kl, integer *ku, integer *nrhs, doublecomplex *ab, integer *ldab, 00018 doublecomplex *afb, integer *ldafb, integer *ipiv, char *equed, 00019 doublereal *r__, doublereal *c__, doublecomplex *b, integer *ldb, 00020 doublecomplex *x, integer *ldx, doublereal *rcond, doublereal *rpvgrw, 00021 doublereal *berr, integer *n_err_bnds__, doublereal *err_bnds_norm__, 00022 doublereal *err_bnds_comp__, integer *nparams, doublereal *params, 00023 doublecomplex *work, doublereal *rwork, integer *info) 00024 { 00025 /* System generated locals */ 00026 integer ab_dim1, ab_offset, afb_dim1, afb_offset, b_dim1, b_offset, 00027 x_dim1, x_offset, err_bnds_norm_dim1, err_bnds_norm_offset, 00028 err_bnds_comp_dim1, err_bnds_comp_offset, i__1, i__2, i__3, i__4; 00029 doublereal d__1, d__2; 00030 00031 /* Local variables */ 00032 integer i__, j; 00033 doublereal amax; 00034 extern doublereal zla_gbrpvgrw__(integer *, integer *, integer *, integer 00035 *, doublecomplex *, integer *, doublecomplex *, integer *); 00036 extern logical lsame_(char *, char *); 00037 doublereal rcmin, rcmax; 00038 logical equil; 00039 extern doublereal dlamch_(char *); 00040 doublereal colcnd; 00041 logical nofact; 00042 extern /* Subroutine */ int xerbla_(char *, integer *), zlaqgb_( 00043 integer *, integer *, integer *, integer *, doublecomplex *, 00044 integer *, doublereal *, doublereal *, doublereal *, doublereal *, 00045 doublereal *, char *); 00046 doublereal bignum; 00047 integer infequ; 00048 logical colequ; 00049 doublereal rowcnd; 00050 extern /* Subroutine */ int zgbtrf_(integer *, integer *, integer *, 00051 integer *, doublecomplex *, integer *, integer *, integer *); 00052 logical notran; 00053 extern /* Subroutine */ int zlacpy_(char *, integer *, integer *, 00054 doublecomplex *, integer *, doublecomplex *, integer *); 00055 doublereal smlnum; 00056 extern /* Subroutine */ int zgbtrs_(char *, integer *, integer *, integer 00057 *, integer *, doublecomplex *, integer *, integer *, 00058 doublecomplex *, integer *, integer *); 00059 logical rowequ; 00060 extern /* Subroutine */ int zlascl2_(integer *, integer *, doublereal *, 00061 doublecomplex *, integer *), zgbequb_(integer *, integer *, 00062 integer *, integer *, doublecomplex *, integer *, doublereal *, 00063 doublereal *, doublereal *, doublereal *, doublereal *, integer *) 00064 , zgbrfsx_(char *, char *, integer *, integer *, integer *, 00065 integer *, doublecomplex *, integer *, doublecomplex *, integer *, 00066 integer *, doublereal *, doublereal *, doublecomplex *, integer * 00067 , doublecomplex *, integer *, doublereal *, doublereal *, integer 00068 *, doublereal *, doublereal *, integer *, doublereal *, 00069 doublecomplex *, doublereal *, integer *); 00070 00071 00072 /* -- LAPACK driver routine (version 3.2) -- */ 00073 /* -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- */ 00074 /* -- Jason Riedy of Univ. of California Berkeley. -- */ 00075 /* -- November 2008 -- */ 00076 00077 /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ 00078 /* -- Univ. of California Berkeley and NAG Ltd. -- */ 00079 00080 /* .. */ 00081 /* .. Scalar Arguments .. */ 00082 /* .. */ 00083 /* .. Array Arguments .. */ 00084 /* .. */ 00085 00086 /* Purpose */ 00087 /* ======= */ 00088 00089 /* ZGBSVXX uses the LU factorization to compute the solution to a */ 00090 /* complex*16 system of linear equations A * X = B, where A is an */ 00091 /* N-by-N matrix and X and B are N-by-NRHS matrices. */ 00092 00093 /* If requested, both normwise and maximum componentwise error bounds */ 00094 /* are returned. ZGBSVXX will return a solution with a tiny */ 00095 /* guaranteed error (O(eps) where eps is the working machine */ 00096 /* precision) unless the matrix is very ill-conditioned, in which */ 00097 /* case a warning is returned. Relevant condition numbers also are */ 00098 /* calculated and returned. */ 00099 00100 /* ZGBSVXX accepts user-provided factorizations and equilibration */ 00101 /* factors; see the definitions of the FACT and EQUED options. */ 00102 /* Solving with refinement and using a factorization from a previous */ 00103 /* ZGBSVXX call will also produce a solution with either O(eps) */ 00104 /* errors or warnings, but we cannot make that claim for general */ 00105 /* user-provided factorizations and equilibration factors if they */ 00106 /* differ from what ZGBSVXX would itself produce. */ 00107 00108 /* Description */ 00109 /* =========== */ 00110 00111 /* The following steps are performed: */ 00112 00113 /* 1. If FACT = 'E', double precision scaling factors are computed to equilibrate */ 00114 /* the system: */ 00115 00116 /* TRANS = 'N': diag(R)*A*diag(C) *inv(diag(C))*X = diag(R)*B */ 00117 /* TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B */ 00118 /* TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B */ 00119 00120 /* Whether or not the system will be equilibrated depends on the */ 00121 /* scaling of the matrix A, but if equilibration is used, A is */ 00122 /* overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N') */ 00123 /* or diag(C)*B (if TRANS = 'T' or 'C'). */ 00124 00125 /* 2. If FACT = 'N' or 'E', the LU decomposition is used to factor */ 00126 /* the matrix A (after equilibration if FACT = 'E') as */ 00127 00128 /* A = P * L * U, */ 00129 00130 /* where P is a permutation matrix, L is a unit lower triangular */ 00131 /* matrix, and U is upper triangular. */ 00132 00133 /* 3. If some U(i,i)=0, so that U is exactly singular, then the */ 00134 /* routine returns with INFO = i. Otherwise, the factored form of A */ 00135 /* is used to estimate the condition number of the matrix A (see */ 00136 /* argument RCOND). If the reciprocal of the condition number is less */ 00137 /* than machine precision, the routine still goes on to solve for X */ 00138 /* and compute error bounds as described below. */ 00139 00140 /* 4. The system of equations is solved for X using the factored form */ 00141 /* of A. */ 00142 00143 /* 5. By default (unless PARAMS(LA_LINRX_ITREF_I) is set to zero), */ 00144 /* the routine will use iterative refinement to try to get a small */ 00145 /* error and error bounds. Refinement calculates the residual to at */ 00146 /* least twice the working precision. */ 00147 00148 /* 6. If equilibration was used, the matrix X is premultiplied by */ 00149 /* diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so */ 00150 /* that it solves the original system before equilibration. */ 00151 00152 /* Arguments */ 00153 /* ========= */ 00154 00155 /* Some optional parameters are bundled in the PARAMS array. These */ 00156 /* settings determine how refinement is performed, but often the */ 00157 /* defaults are acceptable. If the defaults are acceptable, users */ 00158 /* can pass NPARAMS = 0 which prevents the source code from accessing */ 00159 /* the PARAMS argument. */ 00160 00161 /* FACT (input) CHARACTER*1 */ 00162 /* Specifies whether or not the factored form of the matrix A is */ 00163 /* supplied on entry, and if not, whether the matrix A should be */ 00164 /* equilibrated before it is factored. */ 00165 /* = 'F': On entry, AF and IPIV contain the factored form of A. */ 00166 /* If EQUED is not 'N', the matrix A has been */ 00167 /* equilibrated with scaling factors given by R and C. */ 00168 /* A, AF, and IPIV are not modified. */ 00169 /* = 'N': The matrix A will be copied to AF and factored. */ 00170 /* = 'E': The matrix A will be equilibrated if necessary, then */ 00171 /* copied to AF and factored. */ 00172 00173 /* TRANS (input) CHARACTER*1 */ 00174 /* Specifies the form of the system of equations: */ 00175 /* = 'N': A * X = B (No transpose) */ 00176 /* = 'T': A**T * X = B (Transpose) */ 00177 /* = 'C': A**H * X = B (Conjugate Transpose = Transpose) */ 00178 00179 /* N (input) INTEGER */ 00180 /* The number of linear equations, i.e., the order of the */ 00181 /* matrix A. N >= 0. */ 00182 00183 /* KL (input) INTEGER */ 00184 /* The number of subdiagonals within the band of A. KL >= 0. */ 00185 00186 /* KU (input) INTEGER */ 00187 /* The number of superdiagonals within the band of A. KU >= 0. */ 00188 00189 /* NRHS (input) INTEGER */ 00190 /* The number of right hand sides, i.e., the number of columns */ 00191 /* of the matrices B and X. NRHS >= 0. */ 00192 00193 /* AB (input/output) DOUBLE PRECISION array, dimension (LDAB,N) */ 00194 /* On entry, the matrix A in band storage, in rows 1 to KL+KU+1. */ 00195 /* The j-th column of A is stored in the j-th column of the */ 00196 /* array AB as follows: */ 00197 /* AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl) */ 00198 00199 /* If FACT = 'F' and EQUED is not 'N', then AB must have been */ 00200 /* equilibrated by the scaling factors in R and/or C. AB is not */ 00201 /* modified if FACT = 'F' or 'N', or if FACT = 'E' and */ 00202 /* EQUED = 'N' on exit. */ 00203 00204 /* On exit, if EQUED .ne. 'N', A is scaled as follows: */ 00205 /* EQUED = 'R': A := diag(R) * A */ 00206 /* EQUED = 'C': A := A * diag(C) */ 00207 /* EQUED = 'B': A := diag(R) * A * diag(C). */ 00208 00209 /* LDAB (input) INTEGER */ 00210 /* The leading dimension of the array AB. LDAB >= KL+KU+1. */ 00211 00212 /* AFB (input or output) DOUBLE PRECISION array, dimension (LDAFB,N) */ 00213 /* If FACT = 'F', then AFB is an input argument and on entry */ 00214 /* contains details of the LU factorization of the band matrix */ 00215 /* A, as computed by ZGBTRF. U is stored as an upper triangular */ 00216 /* band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, */ 00217 /* and the multipliers used during the factorization are stored */ 00218 /* in rows KL+KU+2 to 2*KL+KU+1. If EQUED .ne. 'N', then AFB is */ 00219 /* the factored form of the equilibrated matrix A. */ 00220 00221 /* If FACT = 'N', then AF is an output argument and on exit */ 00222 /* returns the factors L and U from the factorization A = P*L*U */ 00223 /* of the original matrix A. */ 00224 00225 /* If FACT = 'E', then AF is an output argument and on exit */ 00226 /* returns the factors L and U from the factorization A = P*L*U */ 00227 /* of the equilibrated matrix A (see the description of A for */ 00228 /* the form of the equilibrated matrix). */ 00229 00230 /* LDAFB (input) INTEGER */ 00231 /* The leading dimension of the array AFB. LDAFB >= 2*KL+KU+1. */ 00232 00233 /* IPIV (input or output) INTEGER array, dimension (N) */ 00234 /* If FACT = 'F', then IPIV is an input argument and on entry */ 00235 /* contains the pivot indices from the factorization A = P*L*U */ 00236 /* as computed by DGETRF; row i of the matrix was interchanged */ 00237 /* with row IPIV(i). */ 00238 00239 /* If FACT = 'N', then IPIV is an output argument and on exit */ 00240 /* contains the pivot indices from the factorization A = P*L*U */ 00241 /* of the original matrix A. */ 00242 00243 /* If FACT = 'E', then IPIV is an output argument and on exit */ 00244 /* contains the pivot indices from the factorization A = P*L*U */ 00245 /* of the equilibrated matrix A. */ 00246 00247 /* EQUED (input or output) CHARACTER*1 */ 00248 /* Specifies the form of equilibration that was done. */ 00249 /* = 'N': No equilibration (always true if FACT = 'N'). */ 00250 /* = 'R': Row equilibration, i.e., A has been premultiplied by */ 00251 /* diag(R). */ 00252 /* = 'C': Column equilibration, i.e., A has been postmultiplied */ 00253 /* by diag(C). */ 00254 /* = 'B': Both row and column equilibration, i.e., A has been */ 00255 /* replaced by diag(R) * A * diag(C). */ 00256 /* EQUED is an input argument if FACT = 'F'; otherwise, it is an */ 00257 /* output argument. */ 00258 00259 /* R (input or output) DOUBLE PRECISION array, dimension (N) */ 00260 /* The row scale factors for A. If EQUED = 'R' or 'B', A is */ 00261 /* multiplied on the left by diag(R); if EQUED = 'N' or 'C', R */ 00262 /* is not accessed. R is an input argument if FACT = 'F'; */ 00263 /* otherwise, R is an output argument. If FACT = 'F' and */ 00264 /* EQUED = 'R' or 'B', each element of R must be positive. */ 00265 /* If R is output, each element of R is a power of the radix. */ 00266 /* If R is input, each element of R should be a power of the radix */ 00267 /* to ensure a reliable solution and error estimates. Scaling by */ 00268 /* powers of the radix does not cause rounding errors unless the */ 00269 /* result underflows or overflows. Rounding errors during scaling */ 00270 /* lead to refining with a matrix that is not equivalent to the */ 00271 /* input matrix, producing error estimates that may not be */ 00272 /* reliable. */ 00273 00274 /* C (input or output) DOUBLE PRECISION array, dimension (N) */ 00275 /* The column scale factors for A. If EQUED = 'C' or 'B', A is */ 00276 /* multiplied on the right by diag(C); if EQUED = 'N' or 'R', C */ 00277 /* is not accessed. C is an input argument if FACT = 'F'; */ 00278 /* otherwise, C is an output argument. If FACT = 'F' and */ 00279 /* EQUED = 'C' or 'B', each element of C must be positive. */ 00280 /* If C is output, each element of C is a power of the radix. */ 00281 /* If C is input, each element of C should be a power of the radix */ 00282 /* to ensure a reliable solution and error estimates. Scaling by */ 00283 /* powers of the radix does not cause rounding errors unless the */ 00284 /* result underflows or overflows. Rounding errors during scaling */ 00285 /* lead to refining with a matrix that is not equivalent to the */ 00286 /* input matrix, producing error estimates that may not be */ 00287 /* reliable. */ 00288 00289 /* B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) */ 00290 /* On entry, the N-by-NRHS right hand side matrix B. */ 00291 /* On exit, */ 00292 /* if EQUED = 'N', B is not modified; */ 00293 /* if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by */ 00294 /* diag(R)*B; */ 00295 /* if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is */ 00296 /* overwritten by diag(C)*B. */ 00297 00298 /* LDB (input) INTEGER */ 00299 /* The leading dimension of the array B. LDB >= max(1,N). */ 00300 00301 /* X (output) DOUBLE PRECISION array, dimension (LDX,NRHS) */ 00302 /* If INFO = 0, the N-by-NRHS solution matrix X to the original */ 00303 /* system of equations. Note that A and B are modified on exit */ 00304 /* if EQUED .ne. 'N', and the solution to the equilibrated system is */ 00305 /* inv(diag(C))*X if TRANS = 'N' and EQUED = 'C' or 'B', or */ 00306 /* inv(diag(R))*X if TRANS = 'T' or 'C' and EQUED = 'R' or 'B'. */ 00307 00308 /* LDX (input) INTEGER */ 00309 /* The leading dimension of the array X. LDX >= max(1,N). */ 00310 00311 /* RCOND (output) DOUBLE PRECISION */ 00312 /* Reciprocal scaled condition number. This is an estimate of the */ 00313 /* reciprocal Skeel condition number of the matrix A after */ 00314 /* equilibration (if done). If this is less than the machine */ 00315 /* precision (in particular, if it is zero), the matrix is singular */ 00316 /* to working precision. Note that the error may still be small even */ 00317 /* if this number is very small and the matrix appears ill- */ 00318 /* conditioned. */ 00319 00320 /* RPVGRW (output) DOUBLE PRECISION */ 00321 /* Reciprocal pivot growth. On exit, this contains the reciprocal */ 00322 /* pivot growth factor norm(A)/norm(U). The "max absolute element" */ 00323 /* norm is used. If this is much less than 1, then the stability of */ 00324 /* the LU factorization of the (equilibrated) matrix A could be poor. */ 00325 /* This also means that the solution X, estimated condition numbers, */ 00326 /* and error bounds could be unreliable. If factorization fails with */ 00327 /* 0<INFO<=N, then this contains the reciprocal pivot growth factor */ 00328 /* for the leading INFO columns of A. In DGESVX, this quantity is */ 00329 /* returned in WORK(1). */ 00330 00331 /* BERR (output) DOUBLE PRECISION array, dimension (NRHS) */ 00332 /* Componentwise relative backward error. This is the */ 00333 /* componentwise relative backward error of each solution vector X(j) */ 00334 /* (i.e., the smallest relative change in any element of A or B that */ 00335 /* makes X(j) an exact solution). */ 00336 00337 /* N_ERR_BNDS (input) INTEGER */ 00338 /* Number of error bounds to return for each right hand side */ 00339 /* and each type (normwise or componentwise). See ERR_BNDS_NORM and */ 00340 /* ERR_BNDS_COMP below. */ 00341 00342 /* ERR_BNDS_NORM (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS) */ 00343 /* For each right-hand side, this array contains information about */ 00344 /* various error bounds and condition numbers corresponding to the */ 00345 /* normwise relative error, which is defined as follows: */ 00346 00347 /* Normwise relative error in the ith solution vector: */ 00348 /* max_j (abs(XTRUE(j,i) - X(j,i))) */ 00349 /* ------------------------------ */ 00350 /* max_j abs(X(j,i)) */ 00351 00352 /* The array is indexed by the type of error information as described */ 00353 /* below. There currently are up to three pieces of information */ 00354 /* returned. */ 00355 00356 /* The first index in ERR_BNDS_NORM(i,:) corresponds to the ith */ 00357 /* right-hand side. */ 00358 00359 /* The second index in ERR_BNDS_NORM(:,err) contains the following */ 00360 /* three fields: */ 00361 /* err = 1 "Trust/don't trust" boolean. Trust the answer if the */ 00362 /* reciprocal condition number is less than the threshold */ 00363 /* sqrt(n) * dlamch('Epsilon'). */ 00364 00365 /* err = 2 "Guaranteed" error bound: The estimated forward error, */ 00366 /* almost certainly within a factor of 10 of the true error */ 00367 /* so long as the next entry is greater than the threshold */ 00368 /* sqrt(n) * dlamch('Epsilon'). This error bound should only */ 00369 /* be trusted if the previous boolean is true. */ 00370 00371 /* err = 3 Reciprocal condition number: Estimated normwise */ 00372 /* reciprocal condition number. Compared with the threshold */ 00373 /* sqrt(n) * dlamch('Epsilon') to determine if the error */ 00374 /* estimate is "guaranteed". These reciprocal condition */ 00375 /* numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some */ 00376 /* appropriately scaled matrix Z. */ 00377 /* Let Z = S*A, where S scales each row by a power of the */ 00378 /* radix so all absolute row sums of Z are approximately 1. */ 00379 00380 /* See Lapack Working Note 165 for further details and extra */ 00381 /* cautions. */ 00382 00383 /* ERR_BNDS_COMP (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS) */ 00384 /* For each right-hand side, this array contains information about */ 00385 /* various error bounds and condition numbers corresponding to the */ 00386 /* componentwise relative error, which is defined as follows: */ 00387 00388 /* Componentwise relative error in the ith solution vector: */ 00389 /* abs(XTRUE(j,i) - X(j,i)) */ 00390 /* max_j ---------------------- */ 00391 /* abs(X(j,i)) */ 00392 00393 /* The array is indexed by the right-hand side i (on which the */ 00394 /* componentwise relative error depends), and the type of error */ 00395 /* information as described below. There currently are up to three */ 00396 /* pieces of information returned for each right-hand side. If */ 00397 /* componentwise accuracy is not requested (PARAMS(3) = 0.0), then */ 00398 /* ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most */ 00399 /* the first (:,N_ERR_BNDS) entries are returned. */ 00400 00401 /* The first index in ERR_BNDS_COMP(i,:) corresponds to the ith */ 00402 /* right-hand side. */ 00403 00404 /* The second index in ERR_BNDS_COMP(:,err) contains the following */ 00405 /* three fields: */ 00406 /* err = 1 "Trust/don't trust" boolean. Trust the answer if the */ 00407 /* reciprocal condition number is less than the threshold */ 00408 /* sqrt(n) * dlamch('Epsilon'). */ 00409 00410 /* err = 2 "Guaranteed" error bound: The estimated forward error, */ 00411 /* almost certainly within a factor of 10 of the true error */ 00412 /* so long as the next entry is greater than the threshold */ 00413 /* sqrt(n) * dlamch('Epsilon'). This error bound should only */ 00414 /* be trusted if the previous boolean is true. */ 00415 00416 /* err = 3 Reciprocal condition number: Estimated componentwise */ 00417 /* reciprocal condition number. Compared with the threshold */ 00418 /* sqrt(n) * dlamch('Epsilon') to determine if the error */ 00419 /* estimate is "guaranteed". These reciprocal condition */ 00420 /* numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some */ 00421 /* appropriately scaled matrix Z. */ 00422 /* Let Z = S*(A*diag(x)), where x is the solution for the */ 00423 /* current right-hand side and S scales each row of */ 00424 /* A*diag(x) by a power of the radix so all absolute row */ 00425 /* sums of Z are approximately 1. */ 00426 00427 /* See Lapack Working Note 165 for further details and extra */ 00428 /* cautions. */ 00429 00430 /* NPARAMS (input) INTEGER */ 00431 /* Specifies the number of parameters set in PARAMS. If .LE. 0, the */ 00432 /* PARAMS array is never referenced and default values are used. */ 00433 00434 /* PARAMS (input / output) DOUBLE PRECISION array, dimension NPARAMS */ 00435 /* Specifies algorithm parameters. If an entry is .LT. 0.0, then */ 00436 /* that entry will be filled with default value used for that */ 00437 /* parameter. Only positions up to NPARAMS are accessed; defaults */ 00438 /* are used for higher-numbered parameters. */ 00439 00440 /* PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative */ 00441 /* refinement or not. */ 00442 /* Default: 1.0D+0 */ 00443 /* = 0.0 : No refinement is performed, and no error bounds are */ 00444 /* computed. */ 00445 /* = 1.0 : Use the extra-precise refinement algorithm. */ 00446 /* (other values are reserved for future use) */ 00447 00448 /* PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual */ 00449 /* computations allowed for refinement. */ 00450 /* Default: 10 */ 00451 /* Aggressive: Set to 100 to permit convergence using approximate */ 00452 /* factorizations or factorizations other than LU. If */ 00453 /* the factorization uses a technique other than */ 00454 /* Gaussian elimination, the guarantees in */ 00455 /* err_bnds_norm and err_bnds_comp may no longer be */ 00456 /* trustworthy. */ 00457 00458 /* PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code */ 00459 /* will attempt to find a solution with small componentwise */ 00460 /* relative error in the double-precision algorithm. Positive */ 00461 /* is true, 0.0 is false. */ 00462 /* Default: 1.0 (attempt componentwise convergence) */ 00463 00464 /* WORK (workspace) DOUBLE PRECISION array, dimension (4*N) */ 00465 00466 /* IWORK (workspace) INTEGER array, dimension (N) */ 00467 00468 /* INFO (output) INTEGER */ 00469 /* = 0: Successful exit. The solution to every right-hand side is */ 00470 /* guaranteed. */ 00471 /* < 0: If INFO = -i, the i-th argument had an illegal value */ 00472 /* > 0 and <= N: U(INFO,INFO) is exactly zero. The factorization */ 00473 /* has been completed, but the factor U is exactly singular, so */ 00474 /* the solution and error bounds could not be computed. RCOND = 0 */ 00475 /* is returned. */ 00476 /* = N+J: The solution corresponding to the Jth right-hand side is */ 00477 /* not guaranteed. The solutions corresponding to other right- */ 00478 /* hand sides K with K > J may not be guaranteed as well, but */ 00479 /* only the first such right-hand side is reported. If a small */ 00480 /* componentwise error is not requested (PARAMS(3) = 0.0) then */ 00481 /* the Jth right-hand side is the first with a normwise error */ 00482 /* bound that is not guaranteed (the smallest J such */ 00483 /* that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0) */ 00484 /* the Jth right-hand side is the first with either a normwise or */ 00485 /* componentwise error bound that is not guaranteed (the smallest */ 00486 /* J such that either ERR_BNDS_NORM(J,1) = 0.0 or */ 00487 /* ERR_BNDS_COMP(J,1) = 0.0). See the definition of */ 00488 /* ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information */ 00489 /* about all of the right-hand sides check ERR_BNDS_NORM or */ 00490 /* ERR_BNDS_COMP. */ 00491 00492 /* ================================================================== */ 00493 00494 /* .. Parameters .. */ 00495 /* .. */ 00496 /* .. Local Scalars .. */ 00497 /* .. */ 00498 /* .. External Functions .. */ 00499 /* .. */ 00500 /* .. External Subroutines .. */ 00501 /* .. */ 00502 /* .. Intrinsic Functions .. */ 00503 /* .. */ 00504 /* .. Executable Statements .. */ 00505 00506 /* Parameter adjustments */ 00507 err_bnds_comp_dim1 = *nrhs; 00508 err_bnds_comp_offset = 1 + err_bnds_comp_dim1; 00509 err_bnds_comp__ -= err_bnds_comp_offset; 00510 err_bnds_norm_dim1 = *nrhs; 00511 err_bnds_norm_offset = 1 + err_bnds_norm_dim1; 00512 err_bnds_norm__ -= err_bnds_norm_offset; 00513 ab_dim1 = *ldab; 00514 ab_offset = 1 + ab_dim1; 00515 ab -= ab_offset; 00516 afb_dim1 = *ldafb; 00517 afb_offset = 1 + afb_dim1; 00518 afb -= afb_offset; 00519 --ipiv; 00520 --r__; 00521 --c__; 00522 b_dim1 = *ldb; 00523 b_offset = 1 + b_dim1; 00524 b -= b_offset; 00525 x_dim1 = *ldx; 00526 x_offset = 1 + x_dim1; 00527 x -= x_offset; 00528 --berr; 00529 --params; 00530 --work; 00531 --rwork; 00532 00533 /* Function Body */ 00534 *info = 0; 00535 nofact = lsame_(fact, "N"); 00536 equil = lsame_(fact, "E"); 00537 notran = lsame_(trans, "N"); 00538 smlnum = dlamch_("Safe minimum"); 00539 bignum = 1. / smlnum; 00540 if (nofact || equil) { 00541 *(unsigned char *)equed = 'N'; 00542 rowequ = FALSE_; 00543 colequ = FALSE_; 00544 } else { 00545 rowequ = lsame_(equed, "R") || lsame_(equed, 00546 "B"); 00547 colequ = lsame_(equed, "C") || lsame_(equed, 00548 "B"); 00549 } 00550 00551 /* Default is failure. If an input parameter is wrong or */ 00552 /* factorization fails, make everything look horrible. Only the */ 00553 /* pivot growth is set here, the rest is initialized in ZGBRFSX. */ 00554 00555 *rpvgrw = 0.; 00556 00557 /* Test the input parameters. PARAMS is not tested until DGERFSX. */ 00558 00559 if (! nofact && ! equil && ! lsame_(fact, "F")) { 00560 *info = -1; 00561 } else if (! notran && ! lsame_(trans, "T") && ! 00562 lsame_(trans, "C")) { 00563 *info = -2; 00564 } else if (*n < 0) { 00565 *info = -3; 00566 } else if (*kl < 0) { 00567 *info = -4; 00568 } else if (*ku < 0) { 00569 *info = -5; 00570 } else if (*nrhs < 0) { 00571 *info = -6; 00572 } else if (*ldab < *kl + *ku + 1) { 00573 *info = -8; 00574 } else if (*ldafb < (*kl << 1) + *ku + 1) { 00575 *info = -10; 00576 } else if (lsame_(fact, "F") && ! (rowequ || colequ 00577 || lsame_(equed, "N"))) { 00578 *info = -12; 00579 } else { 00580 if (rowequ) { 00581 rcmin = bignum; 00582 rcmax = 0.; 00583 i__1 = *n; 00584 for (j = 1; j <= i__1; ++j) { 00585 /* Computing MIN */ 00586 d__1 = rcmin, d__2 = r__[j]; 00587 rcmin = min(d__1,d__2); 00588 /* Computing MAX */ 00589 d__1 = rcmax, d__2 = r__[j]; 00590 rcmax = max(d__1,d__2); 00591 /* L10: */ 00592 } 00593 if (rcmin <= 0.) { 00594 *info = -13; 00595 } else if (*n > 0) { 00596 rowcnd = max(rcmin,smlnum) / min(rcmax,bignum); 00597 } else { 00598 rowcnd = 1.; 00599 } 00600 } 00601 if (colequ && *info == 0) { 00602 rcmin = bignum; 00603 rcmax = 0.; 00604 i__1 = *n; 00605 for (j = 1; j <= i__1; ++j) { 00606 /* Computing MIN */ 00607 d__1 = rcmin, d__2 = c__[j]; 00608 rcmin = min(d__1,d__2); 00609 /* Computing MAX */ 00610 d__1 = rcmax, d__2 = c__[j]; 00611 rcmax = max(d__1,d__2); 00612 /* L20: */ 00613 } 00614 if (rcmin <= 0.) { 00615 *info = -14; 00616 } else if (*n > 0) { 00617 colcnd = max(rcmin,smlnum) / min(rcmax,bignum); 00618 } else { 00619 colcnd = 1.; 00620 } 00621 } 00622 if (*info == 0) { 00623 if (*ldb < max(1,*n)) { 00624 *info = -15; 00625 } else if (*ldx < max(1,*n)) { 00626 *info = -16; 00627 } 00628 } 00629 } 00630 00631 if (*info != 0) { 00632 i__1 = -(*info); 00633 xerbla_("ZGBSVXX", &i__1); 00634 return 0; 00635 } 00636 00637 if (equil) { 00638 00639 /* Compute row and column scalings to equilibrate the matrix A. */ 00640 00641 zgbequb_(n, n, kl, ku, &ab[ab_offset], ldab, &r__[1], &c__[1], & 00642 rowcnd, &colcnd, &amax, &infequ); 00643 if (infequ == 0) { 00644 00645 /* Equilibrate the matrix. */ 00646 00647 zlaqgb_(n, n, kl, ku, &ab[ab_offset], ldab, &r__[1], &c__[1], & 00648 rowcnd, &colcnd, &amax, equed); 00649 rowequ = lsame_(equed, "R") || lsame_(equed, 00650 "B"); 00651 colequ = lsame_(equed, "C") || lsame_(equed, 00652 "B"); 00653 } 00654 00655 /* If the scaling factors are not applied, set them to 1.0. */ 00656 00657 if (! rowequ) { 00658 i__1 = *n; 00659 for (j = 1; j <= i__1; ++j) { 00660 r__[j] = 1.; 00661 } 00662 } 00663 if (! colequ) { 00664 i__1 = *n; 00665 for (j = 1; j <= i__1; ++j) { 00666 c__[j] = 1.; 00667 } 00668 } 00669 } 00670 00671 /* Scale the right-hand side. */ 00672 00673 if (notran) { 00674 if (rowequ) { 00675 zlascl2_(n, nrhs, &r__[1], &b[b_offset], ldb); 00676 } 00677 } else { 00678 if (colequ) { 00679 zlascl2_(n, nrhs, &c__[1], &b[b_offset], ldb); 00680 } 00681 } 00682 00683 if (nofact || equil) { 00684 00685 /* Compute the LU factorization of A. */ 00686 00687 i__1 = *n; 00688 for (j = 1; j <= i__1; ++j) { 00689 i__2 = (*kl << 1) + *ku + 1; 00690 for (i__ = *kl + 1; i__ <= i__2; ++i__) { 00691 i__3 = i__ + j * afb_dim1; 00692 i__4 = i__ - *kl + j * ab_dim1; 00693 afb[i__3].r = ab[i__4].r, afb[i__3].i = ab[i__4].i; 00694 /* L30: */ 00695 } 00696 /* L40: */ 00697 } 00698 zgbtrf_(n, n, kl, ku, &afb[afb_offset], ldafb, &ipiv[1], info); 00699 00700 /* Return if INFO is non-zero. */ 00701 00702 if (*info > 0) { 00703 00704 /* Pivot in column INFO is exactly 0 */ 00705 /* Compute the reciprocal pivot growth factor of the */ 00706 /* leading rank-deficient INFO columns of A. */ 00707 00708 *rpvgrw = zla_gbrpvgrw__(n, kl, ku, info, &ab[ab_offset], ldab, & 00709 afb[afb_offset], ldafb); 00710 return 0; 00711 } 00712 } 00713 00714 /* Compute the reciprocal pivot growth factor RPVGRW. */ 00715 00716 *rpvgrw = zla_gbrpvgrw__(n, kl, ku, n, &ab[ab_offset], ldab, &afb[ 00717 afb_offset], ldafb); 00718 00719 /* Compute the solution matrix X. */ 00720 00721 zlacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx); 00722 zgbtrs_(trans, n, kl, ku, nrhs, &afb[afb_offset], ldafb, &ipiv[1], &x[ 00723 x_offset], ldx, info); 00724 00725 /* Use iterative refinement to improve the computed solution and */ 00726 /* compute error bounds and backward error estimates for it. */ 00727 00728 zgbrfsx_(trans, equed, n, kl, ku, nrhs, &ab[ab_offset], ldab, &afb[ 00729 afb_offset], ldafb, &ipiv[1], &r__[1], &c__[1], &b[b_offset], ldb, 00730 &x[x_offset], ldx, rcond, &berr[1], n_err_bnds__, & 00731 err_bnds_norm__[err_bnds_norm_offset], &err_bnds_comp__[ 00732 err_bnds_comp_offset], nparams, ¶ms[1], &work[1], &rwork[1], 00733 info); 00734 00735 /* Scale solutions. */ 00736 00737 if (colequ && notran) { 00738 zlascl2_(n, nrhs, &c__[1], &x[x_offset], ldx); 00739 } else if (rowequ && ! notran) { 00740 zlascl2_(n, nrhs, &r__[1], &x[x_offset], ldx); 00741 } 00742 00743 return 0; 00744 00745 /* End of ZGBSVXX */ 00746 00747 } /* zgbsvxx_ */