zgbsv.c
Go to the documentation of this file.
00001 /* zgbsv.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Subroutine */ int zgbsv_(integer *n, integer *kl, integer *ku, integer *
00017         nrhs, doublecomplex *ab, integer *ldab, integer *ipiv, doublecomplex *
00018         b, integer *ldb, integer *info)
00019 {
00020     /* System generated locals */
00021     integer ab_dim1, ab_offset, b_dim1, b_offset, i__1;
00022 
00023     /* Local variables */
00024     extern /* Subroutine */ int xerbla_(char *, integer *), zgbtrf_(
00025             integer *, integer *, integer *, integer *, doublecomplex *, 
00026             integer *, integer *, integer *), zgbtrs_(char *, integer *, 
00027             integer *, integer *, integer *, doublecomplex *, integer *, 
00028             integer *, doublecomplex *, integer *, integer *);
00029 
00030 
00031 /*  -- LAPACK driver routine (version 3.2) -- */
00032 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00033 /*     November 2006 */
00034 
00035 /*     .. Scalar Arguments .. */
00036 /*     .. */
00037 /*     .. Array Arguments .. */
00038 /*     .. */
00039 
00040 /*  Purpose */
00041 /*  ======= */
00042 
00043 /*  ZGBSV computes the solution to a complex system of linear equations */
00044 /*  A * X = B, where A is a band matrix of order N with KL subdiagonals */
00045 /*  and KU superdiagonals, and X and B are N-by-NRHS matrices. */
00046 
00047 /*  The LU decomposition with partial pivoting and row interchanges is */
00048 /*  used to factor A as A = L * U, where L is a product of permutation */
00049 /*  and unit lower triangular matrices with KL subdiagonals, and U is */
00050 /*  upper triangular with KL+KU superdiagonals.  The factored form of A */
00051 /*  is then used to solve the system of equations A * X = B. */
00052 
00053 /*  Arguments */
00054 /*  ========= */
00055 
00056 /*  N       (input) INTEGER */
00057 /*          The number of linear equations, i.e., the order of the */
00058 /*          matrix A.  N >= 0. */
00059 
00060 /*  KL      (input) INTEGER */
00061 /*          The number of subdiagonals within the band of A.  KL >= 0. */
00062 
00063 /*  KU      (input) INTEGER */
00064 /*          The number of superdiagonals within the band of A.  KU >= 0. */
00065 
00066 /*  NRHS    (input) INTEGER */
00067 /*          The number of right hand sides, i.e., the number of columns */
00068 /*          of the matrix B.  NRHS >= 0. */
00069 
00070 /*  AB      (input/output) COMPLEX*16 array, dimension (LDAB,N) */
00071 /*          On entry, the matrix A in band storage, in rows KL+1 to */
00072 /*          2*KL+KU+1; rows 1 to KL of the array need not be set. */
00073 /*          The j-th column of A is stored in the j-th column of the */
00074 /*          array AB as follows: */
00075 /*          AB(KL+KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+KL) */
00076 /*          On exit, details of the factorization: U is stored as an */
00077 /*          upper triangular band matrix with KL+KU superdiagonals in */
00078 /*          rows 1 to KL+KU+1, and the multipliers used during the */
00079 /*          factorization are stored in rows KL+KU+2 to 2*KL+KU+1. */
00080 /*          See below for further details. */
00081 
00082 /*  LDAB    (input) INTEGER */
00083 /*          The leading dimension of the array AB.  LDAB >= 2*KL+KU+1. */
00084 
00085 /*  IPIV    (output) INTEGER array, dimension (N) */
00086 /*          The pivot indices that define the permutation matrix P; */
00087 /*          row i of the matrix was interchanged with row IPIV(i). */
00088 
00089 /*  B       (input/output) COMPLEX*16 array, dimension (LDB,NRHS) */
00090 /*          On entry, the N-by-NRHS right hand side matrix B. */
00091 /*          On exit, if INFO = 0, the N-by-NRHS solution matrix X. */
00092 
00093 /*  LDB     (input) INTEGER */
00094 /*          The leading dimension of the array B.  LDB >= max(1,N). */
00095 
00096 /*  INFO    (output) INTEGER */
00097 /*          = 0:  successful exit */
00098 /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
00099 /*          > 0:  if INFO = i, U(i,i) is exactly zero.  The factorization */
00100 /*                has been completed, but the factor U is exactly */
00101 /*                singular, and the solution has not been computed. */
00102 
00103 /*  Further Details */
00104 /*  =============== */
00105 
00106 /*  The band storage scheme is illustrated by the following example, when */
00107 /*  M = N = 6, KL = 2, KU = 1: */
00108 
00109 /*  On entry:                       On exit: */
00110 
00111 /*      *    *    *    +    +    +       *    *    *   u14  u25  u36 */
00112 /*      *    *    +    +    +    +       *    *   u13  u24  u35  u46 */
00113 /*      *   a12  a23  a34  a45  a56      *   u12  u23  u34  u45  u56 */
00114 /*     a11  a22  a33  a44  a55  a66     u11  u22  u33  u44  u55  u66 */
00115 /*     a21  a32  a43  a54  a65   *      m21  m32  m43  m54  m65   * */
00116 /*     a31  a42  a53  a64   *    *      m31  m42  m53  m64   *    * */
00117 
00118 /*  Array elements marked * are not used by the routine; elements marked */
00119 /*  + need not be set on entry, but are required by the routine to store */
00120 /*  elements of U because of fill-in resulting from the row interchanges. */
00121 
00122 /*  ===================================================================== */
00123 
00124 /*     .. External Subroutines .. */
00125 /*     .. */
00126 /*     .. Intrinsic Functions .. */
00127 /*     .. */
00128 /*     .. Executable Statements .. */
00129 
00130 /*     Test the input parameters. */
00131 
00132     /* Parameter adjustments */
00133     ab_dim1 = *ldab;
00134     ab_offset = 1 + ab_dim1;
00135     ab -= ab_offset;
00136     --ipiv;
00137     b_dim1 = *ldb;
00138     b_offset = 1 + b_dim1;
00139     b -= b_offset;
00140 
00141     /* Function Body */
00142     *info = 0;
00143     if (*n < 0) {
00144         *info = -1;
00145     } else if (*kl < 0) {
00146         *info = -2;
00147     } else if (*ku < 0) {
00148         *info = -3;
00149     } else if (*nrhs < 0) {
00150         *info = -4;
00151     } else if (*ldab < (*kl << 1) + *ku + 1) {
00152         *info = -6;
00153     } else if (*ldb < max(*n,1)) {
00154         *info = -9;
00155     }
00156     if (*info != 0) {
00157         i__1 = -(*info);
00158         xerbla_("ZGBSV ", &i__1);
00159         return 0;
00160     }
00161 
00162 /*     Compute the LU factorization of the band matrix A. */
00163 
00164     zgbtrf_(n, n, kl, ku, &ab[ab_offset], ldab, &ipiv[1], info);
00165     if (*info == 0) {
00166 
00167 /*        Solve the system A*X = B, overwriting B with X. */
00168 
00169         zgbtrs_("No transpose", n, kl, ku, nrhs, &ab[ab_offset], ldab, &ipiv[
00170                 1], &b[b_offset], ldb, info);
00171     }
00172     return 0;
00173 
00174 /*     End of ZGBSV */
00175 
00176 } /* zgbsv_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:56:30