zgbequ.c
Go to the documentation of this file.
00001 /* zgbequ.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Subroutine */ int zgbequ_(integer *m, integer *n, integer *kl, integer *ku, 
00017          doublecomplex *ab, integer *ldab, doublereal *r__, doublereal *c__, 
00018         doublereal *rowcnd, doublereal *colcnd, doublereal *amax, integer *
00019         info)
00020 {
00021     /* System generated locals */
00022     integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4;
00023     doublereal d__1, d__2, d__3, d__4;
00024 
00025     /* Builtin functions */
00026     double d_imag(doublecomplex *);
00027 
00028     /* Local variables */
00029     integer i__, j, kd;
00030     doublereal rcmin, rcmax;
00031     extern doublereal dlamch_(char *);
00032     extern /* Subroutine */ int xerbla_(char *, integer *);
00033     doublereal bignum, smlnum;
00034 
00035 
00036 /*  -- LAPACK routine (version 3.2) -- */
00037 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00038 /*     November 2006 */
00039 
00040 /*     .. Scalar Arguments .. */
00041 /*     .. */
00042 /*     .. Array Arguments .. */
00043 /*     .. */
00044 
00045 /*  Purpose */
00046 /*  ======= */
00047 
00048 /*  ZGBEQU computes row and column scalings intended to equilibrate an */
00049 /*  M-by-N band matrix A and reduce its condition number.  R returns the */
00050 /*  row scale factors and C the column scale factors, chosen to try to */
00051 /*  make the largest element in each row and column of the matrix B with */
00052 /*  elements B(i,j)=R(i)*A(i,j)*C(j) have absolute value 1. */
00053 
00054 /*  R(i) and C(j) are restricted to be between SMLNUM = smallest safe */
00055 /*  number and BIGNUM = largest safe number.  Use of these scaling */
00056 /*  factors is not guaranteed to reduce the condition number of A but */
00057 /*  works well in practice. */
00058 
00059 /*  Arguments */
00060 /*  ========= */
00061 
00062 /*  M       (input) INTEGER */
00063 /*          The number of rows of the matrix A.  M >= 0. */
00064 
00065 /*  N       (input) INTEGER */
00066 /*          The number of columns of the matrix A.  N >= 0. */
00067 
00068 /*  KL      (input) INTEGER */
00069 /*          The number of subdiagonals within the band of A.  KL >= 0. */
00070 
00071 /*  KU      (input) INTEGER */
00072 /*          The number of superdiagonals within the band of A.  KU >= 0. */
00073 
00074 /*  AB      (input) COMPLEX*16 array, dimension (LDAB,N) */
00075 /*          The band matrix A, stored in rows 1 to KL+KU+1.  The j-th */
00076 /*          column of A is stored in the j-th column of the array AB as */
00077 /*          follows: */
00078 /*          AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl). */
00079 
00080 /*  LDAB    (input) INTEGER */
00081 /*          The leading dimension of the array AB.  LDAB >= KL+KU+1. */
00082 
00083 /*  R       (output) DOUBLE PRECISION array, dimension (M) */
00084 /*          If INFO = 0, or INFO > M, R contains the row scale factors */
00085 /*          for A. */
00086 
00087 /*  C       (output) DOUBLE PRECISION array, dimension (N) */
00088 /*          If INFO = 0, C contains the column scale factors for A. */
00089 
00090 /*  ROWCND  (output) DOUBLE PRECISION */
00091 /*          If INFO = 0 or INFO > M, ROWCND contains the ratio of the */
00092 /*          smallest R(i) to the largest R(i).  If ROWCND >= 0.1 and */
00093 /*          AMAX is neither too large nor too small, it is not worth */
00094 /*          scaling by R. */
00095 
00096 /*  COLCND  (output) DOUBLE PRECISION */
00097 /*          If INFO = 0, COLCND contains the ratio of the smallest */
00098 /*          C(i) to the largest C(i).  If COLCND >= 0.1, it is not */
00099 /*          worth scaling by C. */
00100 
00101 /*  AMAX    (output) DOUBLE PRECISION */
00102 /*          Absolute value of largest matrix element.  If AMAX is very */
00103 /*          close to overflow or very close to underflow, the matrix */
00104 /*          should be scaled. */
00105 
00106 /*  INFO    (output) INTEGER */
00107 /*          = 0:  successful exit */
00108 /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
00109 /*          > 0:  if INFO = i, and i is */
00110 /*                <= M:  the i-th row of A is exactly zero */
00111 /*                >  M:  the (i-M)-th column of A is exactly zero */
00112 
00113 /*  ===================================================================== */
00114 
00115 /*     .. Parameters .. */
00116 /*     .. */
00117 /*     .. Local Scalars .. */
00118 /*     .. */
00119 /*     .. External Functions .. */
00120 /*     .. */
00121 /*     .. External Subroutines .. */
00122 /*     .. */
00123 /*     .. Intrinsic Functions .. */
00124 /*     .. */
00125 /*     .. Statement Functions .. */
00126 /*     .. */
00127 /*     .. Statement Function definitions .. */
00128 /*     .. */
00129 /*     .. Executable Statements .. */
00130 
00131 /*     Test the input parameters */
00132 
00133     /* Parameter adjustments */
00134     ab_dim1 = *ldab;
00135     ab_offset = 1 + ab_dim1;
00136     ab -= ab_offset;
00137     --r__;
00138     --c__;
00139 
00140     /* Function Body */
00141     *info = 0;
00142     if (*m < 0) {
00143         *info = -1;
00144     } else if (*n < 0) {
00145         *info = -2;
00146     } else if (*kl < 0) {
00147         *info = -3;
00148     } else if (*ku < 0) {
00149         *info = -4;
00150     } else if (*ldab < *kl + *ku + 1) {
00151         *info = -6;
00152     }
00153     if (*info != 0) {
00154         i__1 = -(*info);
00155         xerbla_("ZGBEQU", &i__1);
00156         return 0;
00157     }
00158 
00159 /*     Quick return if possible */
00160 
00161     if (*m == 0 || *n == 0) {
00162         *rowcnd = 1.;
00163         *colcnd = 1.;
00164         *amax = 0.;
00165         return 0;
00166     }
00167 
00168 /*     Get machine constants. */
00169 
00170     smlnum = dlamch_("S");
00171     bignum = 1. / smlnum;
00172 
00173 /*     Compute row scale factors. */
00174 
00175     i__1 = *m;
00176     for (i__ = 1; i__ <= i__1; ++i__) {
00177         r__[i__] = 0.;
00178 /* L10: */
00179     }
00180 
00181 /*     Find the maximum element in each row. */
00182 
00183     kd = *ku + 1;
00184     i__1 = *n;
00185     for (j = 1; j <= i__1; ++j) {
00186 /* Computing MAX */
00187         i__2 = j - *ku;
00188 /* Computing MIN */
00189         i__4 = j + *kl;
00190         i__3 = min(i__4,*m);
00191         for (i__ = max(i__2,1); i__ <= i__3; ++i__) {
00192 /* Computing MAX */
00193             i__2 = kd + i__ - j + j * ab_dim1;
00194             d__3 = r__[i__], d__4 = (d__1 = ab[i__2].r, abs(d__1)) + (d__2 = 
00195                     d_imag(&ab[kd + i__ - j + j * ab_dim1]), abs(d__2));
00196             r__[i__] = max(d__3,d__4);
00197 /* L20: */
00198         }
00199 /* L30: */
00200     }
00201 
00202 /*     Find the maximum and minimum scale factors. */
00203 
00204     rcmin = bignum;
00205     rcmax = 0.;
00206     i__1 = *m;
00207     for (i__ = 1; i__ <= i__1; ++i__) {
00208 /* Computing MAX */
00209         d__1 = rcmax, d__2 = r__[i__];
00210         rcmax = max(d__1,d__2);
00211 /* Computing MIN */
00212         d__1 = rcmin, d__2 = r__[i__];
00213         rcmin = min(d__1,d__2);
00214 /* L40: */
00215     }
00216     *amax = rcmax;
00217 
00218     if (rcmin == 0.) {
00219 
00220 /*        Find the first zero scale factor and return an error code. */
00221 
00222         i__1 = *m;
00223         for (i__ = 1; i__ <= i__1; ++i__) {
00224             if (r__[i__] == 0.) {
00225                 *info = i__;
00226                 return 0;
00227             }
00228 /* L50: */
00229         }
00230     } else {
00231 
00232 /*        Invert the scale factors. */
00233 
00234         i__1 = *m;
00235         for (i__ = 1; i__ <= i__1; ++i__) {
00236 /* Computing MIN */
00237 /* Computing MAX */
00238             d__2 = r__[i__];
00239             d__1 = max(d__2,smlnum);
00240             r__[i__] = 1. / min(d__1,bignum);
00241 /* L60: */
00242         }
00243 
00244 /*        Compute ROWCND = min(R(I)) / max(R(I)) */
00245 
00246         *rowcnd = max(rcmin,smlnum) / min(rcmax,bignum);
00247     }
00248 
00249 /*     Compute column scale factors */
00250 
00251     i__1 = *n;
00252     for (j = 1; j <= i__1; ++j) {
00253         c__[j] = 0.;
00254 /* L70: */
00255     }
00256 
00257 /*     Find the maximum element in each column, */
00258 /*     assuming the row scaling computed above. */
00259 
00260     kd = *ku + 1;
00261     i__1 = *n;
00262     for (j = 1; j <= i__1; ++j) {
00263 /* Computing MAX */
00264         i__3 = j - *ku;
00265 /* Computing MIN */
00266         i__4 = j + *kl;
00267         i__2 = min(i__4,*m);
00268         for (i__ = max(i__3,1); i__ <= i__2; ++i__) {
00269 /* Computing MAX */
00270             i__3 = kd + i__ - j + j * ab_dim1;
00271             d__3 = c__[j], d__4 = ((d__1 = ab[i__3].r, abs(d__1)) + (d__2 = 
00272                     d_imag(&ab[kd + i__ - j + j * ab_dim1]), abs(d__2))) * 
00273                     r__[i__];
00274             c__[j] = max(d__3,d__4);
00275 /* L80: */
00276         }
00277 /* L90: */
00278     }
00279 
00280 /*     Find the maximum and minimum scale factors. */
00281 
00282     rcmin = bignum;
00283     rcmax = 0.;
00284     i__1 = *n;
00285     for (j = 1; j <= i__1; ++j) {
00286 /* Computing MIN */
00287         d__1 = rcmin, d__2 = c__[j];
00288         rcmin = min(d__1,d__2);
00289 /* Computing MAX */
00290         d__1 = rcmax, d__2 = c__[j];
00291         rcmax = max(d__1,d__2);
00292 /* L100: */
00293     }
00294 
00295     if (rcmin == 0.) {
00296 
00297 /*        Find the first zero scale factor and return an error code. */
00298 
00299         i__1 = *n;
00300         for (j = 1; j <= i__1; ++j) {
00301             if (c__[j] == 0.) {
00302                 *info = *m + j;
00303                 return 0;
00304             }
00305 /* L110: */
00306         }
00307     } else {
00308 
00309 /*        Invert the scale factors. */
00310 
00311         i__1 = *n;
00312         for (j = 1; j <= i__1; ++j) {
00313 /* Computing MIN */
00314 /* Computing MAX */
00315             d__2 = c__[j];
00316             d__1 = max(d__2,smlnum);
00317             c__[j] = 1. / min(d__1,bignum);
00318 /* L120: */
00319         }
00320 
00321 /*        Compute COLCND = min(C(J)) / max(C(J)) */
00322 
00323         *colcnd = max(rcmin,smlnum) / min(rcmax,bignum);
00324     }
00325 
00326     return 0;
00327 
00328 /*     End of ZGBEQU */
00329 
00330 } /* zgbequ_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:56:30