strsna.c
Go to the documentation of this file.
00001 /* strsna.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Table of constant values */
00017 
00018 static integer c__1 = 1;
00019 static logical c_true = TRUE_;
00020 static logical c_false = FALSE_;
00021 
00022 /* Subroutine */ int strsna_(char *job, char *howmny, logical *select, 
00023         integer *n, real *t, integer *ldt, real *vl, integer *ldvl, real *vr, 
00024         integer *ldvr, real *s, real *sep, integer *mm, integer *m, real *
00025         work, integer *ldwork, integer *iwork, integer *info)
00026 {
00027     /* System generated locals */
00028     integer t_dim1, t_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, 
00029             work_dim1, work_offset, i__1, i__2;
00030     real r__1, r__2;
00031 
00032     /* Builtin functions */
00033     double sqrt(doublereal);
00034 
00035     /* Local variables */
00036     integer i__, j, k, n2;
00037     real cs;
00038     integer nn, ks;
00039     real sn, mu, eps, est;
00040     integer kase;
00041     real cond;
00042     logical pair;
00043     integer ierr;
00044     real dumm, prod;
00045     integer ifst;
00046     real lnrm;
00047     extern doublereal sdot_(integer *, real *, integer *, real *, integer *);
00048     integer ilst;
00049     real rnrm, prod1, prod2;
00050     extern doublereal snrm2_(integer *, real *, integer *);
00051     real scale, delta;
00052     extern logical lsame_(char *, char *);
00053     integer isave[3];
00054     logical wants;
00055     real dummy[1];
00056     extern /* Subroutine */ int slacn2_(integer *, real *, real *, integer *, 
00057             real *, integer *, integer *);
00058     extern doublereal slapy2_(real *, real *);
00059     extern /* Subroutine */ int slabad_(real *, real *);
00060     extern doublereal slamch_(char *);
00061     extern /* Subroutine */ int xerbla_(char *, integer *);
00062     real bignum;
00063     logical wantbh;
00064     extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *, 
00065             integer *, real *, integer *);
00066     logical somcon;
00067     extern /* Subroutine */ int slaqtr_(logical *, logical *, integer *, real 
00068             *, integer *, real *, real *, real *, real *, real *, integer *), 
00069             strexc_(char *, integer *, real *, integer *, real *, integer *, 
00070             integer *, integer *, real *, integer *);
00071     real smlnum;
00072     logical wantsp;
00073 
00074 
00075 /*  -- LAPACK routine (version 3.2) -- */
00076 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00077 /*     November 2006 */
00078 
00079 /*     Modified to call SLACN2 in place of SLACON, 7 Feb 03, SJH. */
00080 
00081 /*     .. Scalar Arguments .. */
00082 /*     .. */
00083 /*     .. Array Arguments .. */
00084 /*     .. */
00085 
00086 /*  Purpose */
00087 /*  ======= */
00088 
00089 /*  STRSNA estimates reciprocal condition numbers for specified */
00090 /*  eigenvalues and/or right eigenvectors of a real upper */
00091 /*  quasi-triangular matrix T (or of any matrix Q*T*Q**T with Q */
00092 /*  orthogonal). */
00093 
00094 /*  T must be in Schur canonical form (as returned by SHSEQR), that is, */
00095 /*  block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each */
00096 /*  2-by-2 diagonal block has its diagonal elements equal and its */
00097 /*  off-diagonal elements of opposite sign. */
00098 
00099 /*  Arguments */
00100 /*  ========= */
00101 
00102 /*  JOB     (input) CHARACTER*1 */
00103 /*          Specifies whether condition numbers are required for */
00104 /*          eigenvalues (S) or eigenvectors (SEP): */
00105 /*          = 'E': for eigenvalues only (S); */
00106 /*          = 'V': for eigenvectors only (SEP); */
00107 /*          = 'B': for both eigenvalues and eigenvectors (S and SEP). */
00108 
00109 /*  HOWMNY  (input) CHARACTER*1 */
00110 /*          = 'A': compute condition numbers for all eigenpairs; */
00111 /*          = 'S': compute condition numbers for selected eigenpairs */
00112 /*                 specified by the array SELECT. */
00113 
00114 /*  SELECT  (input) LOGICAL array, dimension (N) */
00115 /*          If HOWMNY = 'S', SELECT specifies the eigenpairs for which */
00116 /*          condition numbers are required. To select condition numbers */
00117 /*          for the eigenpair corresponding to a real eigenvalue w(j), */
00118 /*          SELECT(j) must be set to .TRUE.. To select condition numbers */
00119 /*          corresponding to a complex conjugate pair of eigenvalues w(j) */
00120 /*          and w(j+1), either SELECT(j) or SELECT(j+1) or both, must be */
00121 /*          set to .TRUE.. */
00122 /*          If HOWMNY = 'A', SELECT is not referenced. */
00123 
00124 /*  N       (input) INTEGER */
00125 /*          The order of the matrix T. N >= 0. */
00126 
00127 /*  T       (input) REAL array, dimension (LDT,N) */
00128 /*          The upper quasi-triangular matrix T, in Schur canonical form. */
00129 
00130 /*  LDT     (input) INTEGER */
00131 /*          The leading dimension of the array T. LDT >= max(1,N). */
00132 
00133 /*  VL      (input) REAL array, dimension (LDVL,M) */
00134 /*          If JOB = 'E' or 'B', VL must contain left eigenvectors of T */
00135 /*          (or of any Q*T*Q**T with Q orthogonal), corresponding to the */
00136 /*          eigenpairs specified by HOWMNY and SELECT. The eigenvectors */
00137 /*          must be stored in consecutive columns of VL, as returned by */
00138 /*          SHSEIN or STREVC. */
00139 /*          If JOB = 'V', VL is not referenced. */
00140 
00141 /*  LDVL    (input) INTEGER */
00142 /*          The leading dimension of the array VL. */
00143 /*          LDVL >= 1; and if JOB = 'E' or 'B', LDVL >= N. */
00144 
00145 /*  VR      (input) REAL array, dimension (LDVR,M) */
00146 /*          If JOB = 'E' or 'B', VR must contain right eigenvectors of T */
00147 /*          (or of any Q*T*Q**T with Q orthogonal), corresponding to the */
00148 /*          eigenpairs specified by HOWMNY and SELECT. The eigenvectors */
00149 /*          must be stored in consecutive columns of VR, as returned by */
00150 /*          SHSEIN or STREVC. */
00151 /*          If JOB = 'V', VR is not referenced. */
00152 
00153 /*  LDVR    (input) INTEGER */
00154 /*          The leading dimension of the array VR. */
00155 /*          LDVR >= 1; and if JOB = 'E' or 'B', LDVR >= N. */
00156 
00157 /*  S       (output) REAL array, dimension (MM) */
00158 /*          If JOB = 'E' or 'B', the reciprocal condition numbers of the */
00159 /*          selected eigenvalues, stored in consecutive elements of the */
00160 /*          array. For a complex conjugate pair of eigenvalues two */
00161 /*          consecutive elements of S are set to the same value. Thus */
00162 /*          S(j), SEP(j), and the j-th columns of VL and VR all */
00163 /*          correspond to the same eigenpair (but not in general the */
00164 /*          j-th eigenpair, unless all eigenpairs are selected). */
00165 /*          If JOB = 'V', S is not referenced. */
00166 
00167 /*  SEP     (output) REAL array, dimension (MM) */
00168 /*          If JOB = 'V' or 'B', the estimated reciprocal condition */
00169 /*          numbers of the selected eigenvectors, stored in consecutive */
00170 /*          elements of the array. For a complex eigenvector two */
00171 /*          consecutive elements of SEP are set to the same value. If */
00172 /*          the eigenvalues cannot be reordered to compute SEP(j), SEP(j) */
00173 /*          is set to 0; this can only occur when the true value would be */
00174 /*          very small anyway. */
00175 /*          If JOB = 'E', SEP is not referenced. */
00176 
00177 /*  MM      (input) INTEGER */
00178 /*          The number of elements in the arrays S (if JOB = 'E' or 'B') */
00179 /*           and/or SEP (if JOB = 'V' or 'B'). MM >= M. */
00180 
00181 /*  M       (output) INTEGER */
00182 /*          The number of elements of the arrays S and/or SEP actually */
00183 /*          used to store the estimated condition numbers. */
00184 /*          If HOWMNY = 'A', M is set to N. */
00185 
00186 /*  WORK    (workspace) REAL array, dimension (LDWORK,N+6) */
00187 /*          If JOB = 'E', WORK is not referenced. */
00188 
00189 /*  LDWORK  (input) INTEGER */
00190 /*          The leading dimension of the array WORK. */
00191 /*          LDWORK >= 1; and if JOB = 'V' or 'B', LDWORK >= N. */
00192 
00193 /*  IWORK   (workspace) INTEGER array, dimension (2*(N-1)) */
00194 /*          If JOB = 'E', IWORK is not referenced. */
00195 
00196 /*  INFO    (output) INTEGER */
00197 /*          = 0: successful exit */
00198 /*          < 0: if INFO = -i, the i-th argument had an illegal value */
00199 
00200 /*  Further Details */
00201 /*  =============== */
00202 
00203 /*  The reciprocal of the condition number of an eigenvalue lambda is */
00204 /*  defined as */
00205 
00206 /*          S(lambda) = |v'*u| / (norm(u)*norm(v)) */
00207 
00208 /*  where u and v are the right and left eigenvectors of T corresponding */
00209 /*  to lambda; v' denotes the conjugate-transpose of v, and norm(u) */
00210 /*  denotes the Euclidean norm. These reciprocal condition numbers always */
00211 /*  lie between zero (very badly conditioned) and one (very well */
00212 /*  conditioned). If n = 1, S(lambda) is defined to be 1. */
00213 
00214 /*  An approximate error bound for a computed eigenvalue W(i) is given by */
00215 
00216 /*                      EPS * norm(T) / S(i) */
00217 
00218 /*  where EPS is the machine precision. */
00219 
00220 /*  The reciprocal of the condition number of the right eigenvector u */
00221 /*  corresponding to lambda is defined as follows. Suppose */
00222 
00223 /*              T = ( lambda  c  ) */
00224 /*                  (   0    T22 ) */
00225 
00226 /*  Then the reciprocal condition number is */
00227 
00228 /*          SEP( lambda, T22 ) = sigma-min( T22 - lambda*I ) */
00229 
00230 /*  where sigma-min denotes the smallest singular value. We approximate */
00231 /*  the smallest singular value by the reciprocal of an estimate of the */
00232 /*  one-norm of the inverse of T22 - lambda*I. If n = 1, SEP(1) is */
00233 /*  defined to be abs(T(1,1)). */
00234 
00235 /*  An approximate error bound for a computed right eigenvector VR(i) */
00236 /*  is given by */
00237 
00238 /*                      EPS * norm(T) / SEP(i) */
00239 
00240 /*  ===================================================================== */
00241 
00242 /*     .. Parameters .. */
00243 /*     .. */
00244 /*     .. Local Scalars .. */
00245 /*     .. */
00246 /*     .. Local Arrays .. */
00247 /*     .. */
00248 /*     .. External Functions .. */
00249 /*     .. */
00250 /*     .. External Subroutines .. */
00251 /*     .. */
00252 /*     .. Intrinsic Functions .. */
00253 /*     .. */
00254 /*     .. Executable Statements .. */
00255 
00256 /*     Decode and test the input parameters */
00257 
00258     /* Parameter adjustments */
00259     --select;
00260     t_dim1 = *ldt;
00261     t_offset = 1 + t_dim1;
00262     t -= t_offset;
00263     vl_dim1 = *ldvl;
00264     vl_offset = 1 + vl_dim1;
00265     vl -= vl_offset;
00266     vr_dim1 = *ldvr;
00267     vr_offset = 1 + vr_dim1;
00268     vr -= vr_offset;
00269     --s;
00270     --sep;
00271     work_dim1 = *ldwork;
00272     work_offset = 1 + work_dim1;
00273     work -= work_offset;
00274     --iwork;
00275 
00276     /* Function Body */
00277     wantbh = lsame_(job, "B");
00278     wants = lsame_(job, "E") || wantbh;
00279     wantsp = lsame_(job, "V") || wantbh;
00280 
00281     somcon = lsame_(howmny, "S");
00282 
00283     *info = 0;
00284     if (! wants && ! wantsp) {
00285         *info = -1;
00286     } else if (! lsame_(howmny, "A") && ! somcon) {
00287         *info = -2;
00288     } else if (*n < 0) {
00289         *info = -4;
00290     } else if (*ldt < max(1,*n)) {
00291         *info = -6;
00292     } else if (*ldvl < 1 || wants && *ldvl < *n) {
00293         *info = -8;
00294     } else if (*ldvr < 1 || wants && *ldvr < *n) {
00295         *info = -10;
00296     } else {
00297 
00298 /*        Set M to the number of eigenpairs for which condition numbers */
00299 /*        are required, and test MM. */
00300 
00301         if (somcon) {
00302             *m = 0;
00303             pair = FALSE_;
00304             i__1 = *n;
00305             for (k = 1; k <= i__1; ++k) {
00306                 if (pair) {
00307                     pair = FALSE_;
00308                 } else {
00309                     if (k < *n) {
00310                         if (t[k + 1 + k * t_dim1] == 0.f) {
00311                             if (select[k]) {
00312                                 ++(*m);
00313                             }
00314                         } else {
00315                             pair = TRUE_;
00316                             if (select[k] || select[k + 1]) {
00317                                 *m += 2;
00318                             }
00319                         }
00320                     } else {
00321                         if (select[*n]) {
00322                             ++(*m);
00323                         }
00324                     }
00325                 }
00326 /* L10: */
00327             }
00328         } else {
00329             *m = *n;
00330         }
00331 
00332         if (*mm < *m) {
00333             *info = -13;
00334         } else if (*ldwork < 1 || wantsp && *ldwork < *n) {
00335             *info = -16;
00336         }
00337     }
00338     if (*info != 0) {
00339         i__1 = -(*info);
00340         xerbla_("STRSNA", &i__1);
00341         return 0;
00342     }
00343 
00344 /*     Quick return if possible */
00345 
00346     if (*n == 0) {
00347         return 0;
00348     }
00349 
00350     if (*n == 1) {
00351         if (somcon) {
00352             if (! select[1]) {
00353                 return 0;
00354             }
00355         }
00356         if (wants) {
00357             s[1] = 1.f;
00358         }
00359         if (wantsp) {
00360             sep[1] = (r__1 = t[t_dim1 + 1], dabs(r__1));
00361         }
00362         return 0;
00363     }
00364 
00365 /*     Get machine constants */
00366 
00367     eps = slamch_("P");
00368     smlnum = slamch_("S") / eps;
00369     bignum = 1.f / smlnum;
00370     slabad_(&smlnum, &bignum);
00371 
00372     ks = 0;
00373     pair = FALSE_;
00374     i__1 = *n;
00375     for (k = 1; k <= i__1; ++k) {
00376 
00377 /*        Determine whether T(k,k) begins a 1-by-1 or 2-by-2 block. */
00378 
00379         if (pair) {
00380             pair = FALSE_;
00381             goto L60;
00382         } else {
00383             if (k < *n) {
00384                 pair = t[k + 1 + k * t_dim1] != 0.f;
00385             }
00386         }
00387 
00388 /*        Determine whether condition numbers are required for the k-th */
00389 /*        eigenpair. */
00390 
00391         if (somcon) {
00392             if (pair) {
00393                 if (! select[k] && ! select[k + 1]) {
00394                     goto L60;
00395                 }
00396             } else {
00397                 if (! select[k]) {
00398                     goto L60;
00399                 }
00400             }
00401         }
00402 
00403         ++ks;
00404 
00405         if (wants) {
00406 
00407 /*           Compute the reciprocal condition number of the k-th */
00408 /*           eigenvalue. */
00409 
00410             if (! pair) {
00411 
00412 /*              Real eigenvalue. */
00413 
00414                 prod = sdot_(n, &vr[ks * vr_dim1 + 1], &c__1, &vl[ks * 
00415                         vl_dim1 + 1], &c__1);
00416                 rnrm = snrm2_(n, &vr[ks * vr_dim1 + 1], &c__1);
00417                 lnrm = snrm2_(n, &vl[ks * vl_dim1 + 1], &c__1);
00418                 s[ks] = dabs(prod) / (rnrm * lnrm);
00419             } else {
00420 
00421 /*              Complex eigenvalue. */
00422 
00423                 prod1 = sdot_(n, &vr[ks * vr_dim1 + 1], &c__1, &vl[ks * 
00424                         vl_dim1 + 1], &c__1);
00425                 prod1 += sdot_(n, &vr[(ks + 1) * vr_dim1 + 1], &c__1, &vl[(ks 
00426                         + 1) * vl_dim1 + 1], &c__1);
00427                 prod2 = sdot_(n, &vl[ks * vl_dim1 + 1], &c__1, &vr[(ks + 1) * 
00428                         vr_dim1 + 1], &c__1);
00429                 prod2 -= sdot_(n, &vl[(ks + 1) * vl_dim1 + 1], &c__1, &vr[ks *
00430                          vr_dim1 + 1], &c__1);
00431                 r__1 = snrm2_(n, &vr[ks * vr_dim1 + 1], &c__1);
00432                 r__2 = snrm2_(n, &vr[(ks + 1) * vr_dim1 + 1], &c__1);
00433                 rnrm = slapy2_(&r__1, &r__2);
00434                 r__1 = snrm2_(n, &vl[ks * vl_dim1 + 1], &c__1);
00435                 r__2 = snrm2_(n, &vl[(ks + 1) * vl_dim1 + 1], &c__1);
00436                 lnrm = slapy2_(&r__1, &r__2);
00437                 cond = slapy2_(&prod1, &prod2) / (rnrm * lnrm);
00438                 s[ks] = cond;
00439                 s[ks + 1] = cond;
00440             }
00441         }
00442 
00443         if (wantsp) {
00444 
00445 /*           Estimate the reciprocal condition number of the k-th */
00446 /*           eigenvector. */
00447 
00448 /*           Copy the matrix T to the array WORK and swap the diagonal */
00449 /*           block beginning at T(k,k) to the (1,1) position. */
00450 
00451             slacpy_("Full", n, n, &t[t_offset], ldt, &work[work_offset], 
00452                     ldwork);
00453             ifst = k;
00454             ilst = 1;
00455             strexc_("No Q", n, &work[work_offset], ldwork, dummy, &c__1, &
00456                     ifst, &ilst, &work[(*n + 1) * work_dim1 + 1], &ierr);
00457 
00458             if (ierr == 1 || ierr == 2) {
00459 
00460 /*              Could not swap because blocks not well separated */
00461 
00462                 scale = 1.f;
00463                 est = bignum;
00464             } else {
00465 
00466 /*              Reordering successful */
00467 
00468                 if (work[work_dim1 + 2] == 0.f) {
00469 
00470 /*                 Form C = T22 - lambda*I in WORK(2:N,2:N). */
00471 
00472                     i__2 = *n;
00473                     for (i__ = 2; i__ <= i__2; ++i__) {
00474                         work[i__ + i__ * work_dim1] -= work[work_dim1 + 1];
00475 /* L20: */
00476                     }
00477                     n2 = 1;
00478                     nn = *n - 1;
00479                 } else {
00480 
00481 /*                 Triangularize the 2 by 2 block by unitary */
00482 /*                 transformation U = [  cs   i*ss ] */
00483 /*                                    [ i*ss   cs  ]. */
00484 /*                 such that the (1,1) position of WORK is complex */
00485 /*                 eigenvalue lambda with positive imaginary part. (2,2) */
00486 /*                 position of WORK is the complex eigenvalue lambda */
00487 /*                 with negative imaginary  part. */
00488 
00489                     mu = sqrt((r__1 = work[(work_dim1 << 1) + 1], dabs(r__1)))
00490                              * sqrt((r__2 = work[work_dim1 + 2], dabs(r__2)));
00491                     delta = slapy2_(&mu, &work[work_dim1 + 2]);
00492                     cs = mu / delta;
00493                     sn = -work[work_dim1 + 2] / delta;
00494 
00495 /*                 Form */
00496 
00497 /*                 C' = WORK(2:N,2:N) + i*[rwork(1) ..... rwork(n-1) ] */
00498 /*                                        [   mu                     ] */
00499 /*                                        [         ..               ] */
00500 /*                                        [             ..           ] */
00501 /*                                        [                  mu      ] */
00502 /*                 where C' is conjugate transpose of complex matrix C, */
00503 /*                 and RWORK is stored starting in the N+1-st column of */
00504 /*                 WORK. */
00505 
00506                     i__2 = *n;
00507                     for (j = 3; j <= i__2; ++j) {
00508                         work[j * work_dim1 + 2] = cs * work[j * work_dim1 + 2]
00509                                 ;
00510                         work[j + j * work_dim1] -= work[work_dim1 + 1];
00511 /* L30: */
00512                     }
00513                     work[(work_dim1 << 1) + 2] = 0.f;
00514 
00515                     work[(*n + 1) * work_dim1 + 1] = mu * 2.f;
00516                     i__2 = *n - 1;
00517                     for (i__ = 2; i__ <= i__2; ++i__) {
00518                         work[i__ + (*n + 1) * work_dim1] = sn * work[(i__ + 1)
00519                                  * work_dim1 + 1];
00520 /* L40: */
00521                     }
00522                     n2 = 2;
00523                     nn = *n - 1 << 1;
00524                 }
00525 
00526 /*              Estimate norm(inv(C')) */
00527 
00528                 est = 0.f;
00529                 kase = 0;
00530 L50:
00531                 slacn2_(&nn, &work[(*n + 2) * work_dim1 + 1], &work[(*n + 4) *
00532                          work_dim1 + 1], &iwork[1], &est, &kase, isave);
00533                 if (kase != 0) {
00534                     if (kase == 1) {
00535                         if (n2 == 1) {
00536 
00537 /*                       Real eigenvalue: solve C'*x = scale*c. */
00538 
00539                             i__2 = *n - 1;
00540                             slaqtr_(&c_true, &c_true, &i__2, &work[(work_dim1 
00541                                     << 1) + 2], ldwork, dummy, &dumm, &scale, 
00542                                     &work[(*n + 4) * work_dim1 + 1], &work[(*
00543                                     n + 6) * work_dim1 + 1], &ierr);
00544                         } else {
00545 
00546 /*                       Complex eigenvalue: solve */
00547 /*                       C'*(p+iq) = scale*(c+id) in real arithmetic. */
00548 
00549                             i__2 = *n - 1;
00550                             slaqtr_(&c_true, &c_false, &i__2, &work[(
00551                                     work_dim1 << 1) + 2], ldwork, &work[(*n + 
00552                                     1) * work_dim1 + 1], &mu, &scale, &work[(*
00553                                     n + 4) * work_dim1 + 1], &work[(*n + 6) * 
00554                                     work_dim1 + 1], &ierr);
00555                         }
00556                     } else {
00557                         if (n2 == 1) {
00558 
00559 /*                       Real eigenvalue: solve C*x = scale*c. */
00560 
00561                             i__2 = *n - 1;
00562                             slaqtr_(&c_false, &c_true, &i__2, &work[(
00563                                     work_dim1 << 1) + 2], ldwork, dummy, &
00564                                     dumm, &scale, &work[(*n + 4) * work_dim1 
00565                                     + 1], &work[(*n + 6) * work_dim1 + 1], &
00566                                     ierr);
00567                         } else {
00568 
00569 /*                       Complex eigenvalue: solve */
00570 /*                       C*(p+iq) = scale*(c+id) in real arithmetic. */
00571 
00572                             i__2 = *n - 1;
00573                             slaqtr_(&c_false, &c_false, &i__2, &work[(
00574                                     work_dim1 << 1) + 2], ldwork, &work[(*n + 
00575                                     1) * work_dim1 + 1], &mu, &scale, &work[(*
00576                                     n + 4) * work_dim1 + 1], &work[(*n + 6) * 
00577                                     work_dim1 + 1], &ierr);
00578 
00579                         }
00580                     }
00581 
00582                     goto L50;
00583                 }
00584             }
00585 
00586             sep[ks] = scale / dmax(est,smlnum);
00587             if (pair) {
00588                 sep[ks + 1] = sep[ks];
00589             }
00590         }
00591 
00592         if (pair) {
00593             ++ks;
00594         }
00595 
00596 L60:
00597         ;
00598     }
00599     return 0;
00600 
00601 /*     End of STRSNA */
00602 
00603 } /* strsna_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:56:15