stgsna.c
Go to the documentation of this file.
00001 /* stgsna.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Table of constant values */
00017 
00018 static integer c__1 = 1;
00019 static real c_b19 = 1.f;
00020 static real c_b21 = 0.f;
00021 static integer c__2 = 2;
00022 static logical c_false = FALSE_;
00023 static integer c__3 = 3;
00024 
00025 /* Subroutine */ int stgsna_(char *job, char *howmny, logical *select, 
00026         integer *n, real *a, integer *lda, real *b, integer *ldb, real *vl, 
00027         integer *ldvl, real *vr, integer *ldvr, real *s, real *dif, integer *
00028         mm, integer *m, real *work, integer *lwork, integer *iwork, integer *
00029         info)
00030 {
00031     /* System generated locals */
00032     integer a_dim1, a_offset, b_dim1, b_offset, vl_dim1, vl_offset, vr_dim1, 
00033             vr_offset, i__1, i__2;
00034     real r__1, r__2;
00035 
00036     /* Builtin functions */
00037     double sqrt(doublereal);
00038 
00039     /* Local variables */
00040     integer i__, k;
00041     real c1, c2;
00042     integer n1, n2, ks, iz;
00043     real eps, beta, cond;
00044     logical pair;
00045     integer ierr;
00046     real uhav, uhbv;
00047     integer ifst;
00048     real lnrm;
00049     extern doublereal sdot_(integer *, real *, integer *, real *, integer *);
00050     integer ilst;
00051     real rnrm;
00052     extern /* Subroutine */ int slag2_(real *, integer *, real *, integer *, 
00053             real *, real *, real *, real *, real *, real *);
00054     extern doublereal snrm2_(integer *, real *, integer *);
00055     real root1, root2, scale;
00056     extern logical lsame_(char *, char *);
00057     real uhavi, uhbvi;
00058     extern /* Subroutine */ int sgemv_(char *, integer *, integer *, real *, 
00059             real *, integer *, real *, integer *, real *, real *, integer *);
00060     real tmpii;
00061     integer lwmin;
00062     logical wants;
00063     real tmpir, tmpri, dummy[1], tmprr;
00064     extern doublereal slapy2_(real *, real *);
00065     real dummy1[1], alphai, alphar;
00066     extern doublereal slamch_(char *);
00067     extern /* Subroutine */ int xerbla_(char *, integer *);
00068     logical wantbh, wantdf;
00069     extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *, 
00070             integer *, real *, integer *), stgexc_(logical *, logical 
00071             *, integer *, real *, integer *, real *, integer *, real *, 
00072             integer *, real *, integer *, integer *, integer *, real *, 
00073             integer *, integer *);
00074     logical somcon;
00075     real alprqt, smlnum;
00076     logical lquery;
00077     extern /* Subroutine */ int stgsyl_(char *, integer *, integer *, integer 
00078             *, real *, integer *, real *, integer *, real *, integer *, real *
00079 , integer *, real *, integer *, real *, integer *, real *, real *, 
00080              real *, integer *, integer *, integer *);
00081 
00082 
00083 /*  -- LAPACK routine (version 3.2) -- */
00084 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00085 /*     November 2006 */
00086 
00087 /*     .. Scalar Arguments .. */
00088 /*     .. */
00089 /*     .. Array Arguments .. */
00090 /*     .. */
00091 
00092 /*  Purpose */
00093 /*  ======= */
00094 
00095 /*  STGSNA estimates reciprocal condition numbers for specified */
00096 /*  eigenvalues and/or eigenvectors of a matrix pair (A, B) in */
00097 /*  generalized real Schur canonical form (or of any matrix pair */
00098 /*  (Q*A*Z', Q*B*Z') with orthogonal matrices Q and Z, where */
00099 /*  Z' denotes the transpose of Z. */
00100 
00101 /*  (A, B) must be in generalized real Schur form (as returned by SGGES), */
00102 /*  i.e. A is block upper triangular with 1-by-1 and 2-by-2 diagonal */
00103 /*  blocks. B is upper triangular. */
00104 
00105 
00106 /*  Arguments */
00107 /*  ========= */
00108 
00109 /*  JOB     (input) CHARACTER*1 */
00110 /*          Specifies whether condition numbers are required for */
00111 /*          eigenvalues (S) or eigenvectors (DIF): */
00112 /*          = 'E': for eigenvalues only (S); */
00113 /*          = 'V': for eigenvectors only (DIF); */
00114 /*          = 'B': for both eigenvalues and eigenvectors (S and DIF). */
00115 
00116 /*  HOWMNY  (input) CHARACTER*1 */
00117 /*          = 'A': compute condition numbers for all eigenpairs; */
00118 /*          = 'S': compute condition numbers for selected eigenpairs */
00119 /*                 specified by the array SELECT. */
00120 
00121 /*  SELECT  (input) LOGICAL array, dimension (N) */
00122 /*          If HOWMNY = 'S', SELECT specifies the eigenpairs for which */
00123 /*          condition numbers are required. To select condition numbers */
00124 /*          for the eigenpair corresponding to a real eigenvalue w(j), */
00125 /*          SELECT(j) must be set to .TRUE.. To select condition numbers */
00126 /*          corresponding to a complex conjugate pair of eigenvalues w(j) */
00127 /*          and w(j+1), either SELECT(j) or SELECT(j+1) or both, must be */
00128 /*          set to .TRUE.. */
00129 /*          If HOWMNY = 'A', SELECT is not referenced. */
00130 
00131 /*  N       (input) INTEGER */
00132 /*          The order of the square matrix pair (A, B). N >= 0. */
00133 
00134 /*  A       (input) REAL array, dimension (LDA,N) */
00135 /*          The upper quasi-triangular matrix A in the pair (A,B). */
00136 
00137 /*  LDA     (input) INTEGER */
00138 /*          The leading dimension of the array A. LDA >= max(1,N). */
00139 
00140 /*  B       (input) REAL array, dimension (LDB,N) */
00141 /*          The upper triangular matrix B in the pair (A,B). */
00142 
00143 /*  LDB     (input) INTEGER */
00144 /*          The leading dimension of the array B. LDB >= max(1,N). */
00145 
00146 /*  VL      (input) REAL array, dimension (LDVL,M) */
00147 /*          If JOB = 'E' or 'B', VL must contain left eigenvectors of */
00148 /*          (A, B), corresponding to the eigenpairs specified by HOWMNY */
00149 /*          and SELECT. The eigenvectors must be stored in consecutive */
00150 /*          columns of VL, as returned by STGEVC. */
00151 /*          If JOB = 'V', VL is not referenced. */
00152 
00153 /*  LDVL    (input) INTEGER */
00154 /*          The leading dimension of the array VL. LDVL >= 1. */
00155 /*          If JOB = 'E' or 'B', LDVL >= N. */
00156 
00157 /*  VR      (input) REAL array, dimension (LDVR,M) */
00158 /*          If JOB = 'E' or 'B', VR must contain right eigenvectors of */
00159 /*          (A, B), corresponding to the eigenpairs specified by HOWMNY */
00160 /*          and SELECT. The eigenvectors must be stored in consecutive */
00161 /*          columns ov VR, as returned by STGEVC. */
00162 /*          If JOB = 'V', VR is not referenced. */
00163 
00164 /*  LDVR    (input) INTEGER */
00165 /*          The leading dimension of the array VR. LDVR >= 1. */
00166 /*          If JOB = 'E' or 'B', LDVR >= N. */
00167 
00168 /*  S       (output) REAL array, dimension (MM) */
00169 /*          If JOB = 'E' or 'B', the reciprocal condition numbers of the */
00170 /*          selected eigenvalues, stored in consecutive elements of the */
00171 /*          array. For a complex conjugate pair of eigenvalues two */
00172 /*          consecutive elements of S are set to the same value. Thus */
00173 /*          S(j), DIF(j), and the j-th columns of VL and VR all */
00174 /*          correspond to the same eigenpair (but not in general the */
00175 /*          j-th eigenpair, unless all eigenpairs are selected). */
00176 /*          If JOB = 'V', S is not referenced. */
00177 
00178 /*  DIF     (output) REAL array, dimension (MM) */
00179 /*          If JOB = 'V' or 'B', the estimated reciprocal condition */
00180 /*          numbers of the selected eigenvectors, stored in consecutive */
00181 /*          elements of the array. For a complex eigenvector two */
00182 /*          consecutive elements of DIF are set to the same value. If */
00183 /*          the eigenvalues cannot be reordered to compute DIF(j), DIF(j) */
00184 /*          is set to 0; this can only occur when the true value would be */
00185 /*          very small anyway. */
00186 /*          If JOB = 'E', DIF is not referenced. */
00187 
00188 /*  MM      (input) INTEGER */
00189 /*          The number of elements in the arrays S and DIF. MM >= M. */
00190 
00191 /*  M       (output) INTEGER */
00192 /*          The number of elements of the arrays S and DIF used to store */
00193 /*          the specified condition numbers; for each selected real */
00194 /*          eigenvalue one element is used, and for each selected complex */
00195 /*          conjugate pair of eigenvalues, two elements are used. */
00196 /*          If HOWMNY = 'A', M is set to N. */
00197 
00198 /*  WORK    (workspace/output) REAL array, dimension (MAX(1,LWORK)) */
00199 /*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
00200 
00201 /*  LWORK   (input) INTEGER */
00202 /*          The dimension of the array WORK. LWORK >= max(1,N). */
00203 /*          If JOB = 'V' or 'B' LWORK >= 2*N*(N+2)+16. */
00204 
00205 /*          If LWORK = -1, then a workspace query is assumed; the routine */
00206 /*          only calculates the optimal size of the WORK array, returns */
00207 /*          this value as the first entry of the WORK array, and no error */
00208 /*          message related to LWORK is issued by XERBLA. */
00209 
00210 /*  IWORK   (workspace) INTEGER array, dimension (N + 6) */
00211 /*          If JOB = 'E', IWORK is not referenced. */
00212 
00213 /*  INFO    (output) INTEGER */
00214 /*          =0: Successful exit */
00215 /*          <0: If INFO = -i, the i-th argument had an illegal value */
00216 
00217 
00218 /*  Further Details */
00219 /*  =============== */
00220 
00221 /*  The reciprocal of the condition number of a generalized eigenvalue */
00222 /*  w = (a, b) is defined as */
00223 
00224 /*       S(w) = (|u'Av|**2 + |u'Bv|**2)**(1/2) / (norm(u)*norm(v)) */
00225 
00226 /*  where u and v are the left and right eigenvectors of (A, B) */
00227 /*  corresponding to w; |z| denotes the absolute value of the complex */
00228 /*  number, and norm(u) denotes the 2-norm of the vector u. */
00229 /*  The pair (a, b) corresponds to an eigenvalue w = a/b (= u'Av/u'Bv) */
00230 /*  of the matrix pair (A, B). If both a and b equal zero, then (A B) is */
00231 /*  singular and S(I) = -1 is returned. */
00232 
00233 /*  An approximate error bound on the chordal distance between the i-th */
00234 /*  computed generalized eigenvalue w and the corresponding exact */
00235 /*  eigenvalue lambda is */
00236 
00237 /*       chord(w, lambda) <= EPS * norm(A, B) / S(I) */
00238 
00239 /*  where EPS is the machine precision. */
00240 
00241 /*  The reciprocal of the condition number DIF(i) of right eigenvector u */
00242 /*  and left eigenvector v corresponding to the generalized eigenvalue w */
00243 /*  is defined as follows: */
00244 
00245 /*  a) If the i-th eigenvalue w = (a,b) is real */
00246 
00247 /*     Suppose U and V are orthogonal transformations such that */
00248 
00249 /*                U'*(A, B)*V  = (S, T) = ( a   *  ) ( b  *  )  1 */
00250 /*                                        ( 0  S22 ),( 0 T22 )  n-1 */
00251 /*                                          1  n-1     1 n-1 */
00252 
00253 /*     Then the reciprocal condition number DIF(i) is */
00254 
00255 /*                Difl((a, b), (S22, T22)) = sigma-min( Zl ), */
00256 
00257 /*     where sigma-min(Zl) denotes the smallest singular value of the */
00258 /*     2(n-1)-by-2(n-1) matrix */
00259 
00260 /*         Zl = [ kron(a, In-1)  -kron(1, S22) ] */
00261 /*              [ kron(b, In-1)  -kron(1, T22) ] . */
00262 
00263 /*     Here In-1 is the identity matrix of size n-1. kron(X, Y) is the */
00264 /*     Kronecker product between the matrices X and Y. */
00265 
00266 /*     Note that if the default method for computing DIF(i) is wanted */
00267 /*     (see SLATDF), then the parameter DIFDRI (see below) should be */
00268 /*     changed from 3 to 4 (routine SLATDF(IJOB = 2 will be used)). */
00269 /*     See STGSYL for more details. */
00270 
00271 /*  b) If the i-th and (i+1)-th eigenvalues are complex conjugate pair, */
00272 
00273 /*     Suppose U and V are orthogonal transformations such that */
00274 
00275 /*                U'*(A, B)*V = (S, T) = ( S11  *   ) ( T11  *  )  2 */
00276 /*                                       ( 0    S22 ),( 0    T22) n-2 */
00277 /*                                         2    n-2     2    n-2 */
00278 
00279 /*     and (S11, T11) corresponds to the complex conjugate eigenvalue */
00280 /*     pair (w, conjg(w)). There exist unitary matrices U1 and V1 such */
00281 /*     that */
00282 
00283 /*         U1'*S11*V1 = ( s11 s12 )   and U1'*T11*V1 = ( t11 t12 ) */
00284 /*                      (  0  s22 )                    (  0  t22 ) */
00285 
00286 /*     where the generalized eigenvalues w = s11/t11 and */
00287 /*     conjg(w) = s22/t22. */
00288 
00289 /*     Then the reciprocal condition number DIF(i) is bounded by */
00290 
00291 /*         min( d1, max( 1, |real(s11)/real(s22)| )*d2 ) */
00292 
00293 /*     where, d1 = Difl((s11, t11), (s22, t22)) = sigma-min(Z1), where */
00294 /*     Z1 is the complex 2-by-2 matrix */
00295 
00296 /*              Z1 =  [ s11  -s22 ] */
00297 /*                    [ t11  -t22 ], */
00298 
00299 /*     This is done by computing (using real arithmetic) the */
00300 /*     roots of the characteristical polynomial det(Z1' * Z1 - lambda I), */
00301 /*     where Z1' denotes the conjugate transpose of Z1 and det(X) denotes */
00302 /*     the determinant of X. */
00303 
00304 /*     and d2 is an upper bound on Difl((S11, T11), (S22, T22)), i.e. an */
00305 /*     upper bound on sigma-min(Z2), where Z2 is (2n-2)-by-(2n-2) */
00306 
00307 /*              Z2 = [ kron(S11', In-2)  -kron(I2, S22) ] */
00308 /*                   [ kron(T11', In-2)  -kron(I2, T22) ] */
00309 
00310 /*     Note that if the default method for computing DIF is wanted (see */
00311 /*     SLATDF), then the parameter DIFDRI (see below) should be changed */
00312 /*     from 3 to 4 (routine SLATDF(IJOB = 2 will be used)). See STGSYL */
00313 /*     for more details. */
00314 
00315 /*  For each eigenvalue/vector specified by SELECT, DIF stores a */
00316 /*  Frobenius norm-based estimate of Difl. */
00317 
00318 /*  An approximate error bound for the i-th computed eigenvector VL(i) or */
00319 /*  VR(i) is given by */
00320 
00321 /*             EPS * norm(A, B) / DIF(i). */
00322 
00323 /*  See ref. [2-3] for more details and further references. */
00324 
00325 /*  Based on contributions by */
00326 /*     Bo Kagstrom and Peter Poromaa, Department of Computing Science, */
00327 /*     Umea University, S-901 87 Umea, Sweden. */
00328 
00329 /*  References */
00330 /*  ========== */
00331 
00332 /*  [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the */
00333 /*      Generalized Real Schur Form of a Regular Matrix Pair (A, B), in */
00334 /*      M.S. Moonen et al (eds), Linear Algebra for Large Scale and */
00335 /*      Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218. */
00336 
00337 /*  [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified */
00338 /*      Eigenvalues of a Regular Matrix Pair (A, B) and Condition */
00339 /*      Estimation: Theory, Algorithms and Software, */
00340 /*      Report UMINF - 94.04, Department of Computing Science, Umea */
00341 /*      University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working */
00342 /*      Note 87. To appear in Numerical Algorithms, 1996. */
00343 
00344 /*  [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software */
00345 /*      for Solving the Generalized Sylvester Equation and Estimating the */
00346 /*      Separation between Regular Matrix Pairs, Report UMINF - 93.23, */
00347 /*      Department of Computing Science, Umea University, S-901 87 Umea, */
00348 /*      Sweden, December 1993, Revised April 1994, Also as LAPACK Working */
00349 /*      Note 75.  To appear in ACM Trans. on Math. Software, Vol 22, */
00350 /*      No 1, 1996. */
00351 
00352 /*  ===================================================================== */
00353 
00354 /*     .. Parameters .. */
00355 /*     .. */
00356 /*     .. Local Scalars .. */
00357 /*     .. */
00358 /*     .. Local Arrays .. */
00359 /*     .. */
00360 /*     .. External Functions .. */
00361 /*     .. */
00362 /*     .. External Subroutines .. */
00363 /*     .. */
00364 /*     .. Intrinsic Functions .. */
00365 /*     .. */
00366 /*     .. Executable Statements .. */
00367 
00368 /*     Decode and test the input parameters */
00369 
00370     /* Parameter adjustments */
00371     --select;
00372     a_dim1 = *lda;
00373     a_offset = 1 + a_dim1;
00374     a -= a_offset;
00375     b_dim1 = *ldb;
00376     b_offset = 1 + b_dim1;
00377     b -= b_offset;
00378     vl_dim1 = *ldvl;
00379     vl_offset = 1 + vl_dim1;
00380     vl -= vl_offset;
00381     vr_dim1 = *ldvr;
00382     vr_offset = 1 + vr_dim1;
00383     vr -= vr_offset;
00384     --s;
00385     --dif;
00386     --work;
00387     --iwork;
00388 
00389     /* Function Body */
00390     wantbh = lsame_(job, "B");
00391     wants = lsame_(job, "E") || wantbh;
00392     wantdf = lsame_(job, "V") || wantbh;
00393 
00394     somcon = lsame_(howmny, "S");
00395 
00396     *info = 0;
00397     lquery = *lwork == -1;
00398 
00399     if (! wants && ! wantdf) {
00400         *info = -1;
00401     } else if (! lsame_(howmny, "A") && ! somcon) {
00402         *info = -2;
00403     } else if (*n < 0) {
00404         *info = -4;
00405     } else if (*lda < max(1,*n)) {
00406         *info = -6;
00407     } else if (*ldb < max(1,*n)) {
00408         *info = -8;
00409     } else if (wants && *ldvl < *n) {
00410         *info = -10;
00411     } else if (wants && *ldvr < *n) {
00412         *info = -12;
00413     } else {
00414 
00415 /*        Set M to the number of eigenpairs for which condition numbers */
00416 /*        are required, and test MM. */
00417 
00418         if (somcon) {
00419             *m = 0;
00420             pair = FALSE_;
00421             i__1 = *n;
00422             for (k = 1; k <= i__1; ++k) {
00423                 if (pair) {
00424                     pair = FALSE_;
00425                 } else {
00426                     if (k < *n) {
00427                         if (a[k + 1 + k * a_dim1] == 0.f) {
00428                             if (select[k]) {
00429                                 ++(*m);
00430                             }
00431                         } else {
00432                             pair = TRUE_;
00433                             if (select[k] || select[k + 1]) {
00434                                 *m += 2;
00435                             }
00436                         }
00437                     } else {
00438                         if (select[*n]) {
00439                             ++(*m);
00440                         }
00441                     }
00442                 }
00443 /* L10: */
00444             }
00445         } else {
00446             *m = *n;
00447         }
00448 
00449         if (*n == 0) {
00450             lwmin = 1;
00451         } else if (lsame_(job, "V") || lsame_(job, 
00452                 "B")) {
00453             lwmin = (*n << 1) * (*n + 2) + 16;
00454         } else {
00455             lwmin = *n;
00456         }
00457         work[1] = (real) lwmin;
00458 
00459         if (*mm < *m) {
00460             *info = -15;
00461         } else if (*lwork < lwmin && ! lquery) {
00462             *info = -18;
00463         }
00464     }
00465 
00466     if (*info != 0) {
00467         i__1 = -(*info);
00468         xerbla_("STGSNA", &i__1);
00469         return 0;
00470     } else if (lquery) {
00471         return 0;
00472     }
00473 
00474 /*     Quick return if possible */
00475 
00476     if (*n == 0) {
00477         return 0;
00478     }
00479 
00480 /*     Get machine constants */
00481 
00482     eps = slamch_("P");
00483     smlnum = slamch_("S") / eps;
00484     ks = 0;
00485     pair = FALSE_;
00486 
00487     i__1 = *n;
00488     for (k = 1; k <= i__1; ++k) {
00489 
00490 /*        Determine whether A(k,k) begins a 1-by-1 or 2-by-2 block. */
00491 
00492         if (pair) {
00493             pair = FALSE_;
00494             goto L20;
00495         } else {
00496             if (k < *n) {
00497                 pair = a[k + 1 + k * a_dim1] != 0.f;
00498             }
00499         }
00500 
00501 /*        Determine whether condition numbers are required for the k-th */
00502 /*        eigenpair. */
00503 
00504         if (somcon) {
00505             if (pair) {
00506                 if (! select[k] && ! select[k + 1]) {
00507                     goto L20;
00508                 }
00509             } else {
00510                 if (! select[k]) {
00511                     goto L20;
00512                 }
00513             }
00514         }
00515 
00516         ++ks;
00517 
00518         if (wants) {
00519 
00520 /*           Compute the reciprocal condition number of the k-th */
00521 /*           eigenvalue. */
00522 
00523             if (pair) {
00524 
00525 /*              Complex eigenvalue pair. */
00526 
00527                 r__1 = snrm2_(n, &vr[ks * vr_dim1 + 1], &c__1);
00528                 r__2 = snrm2_(n, &vr[(ks + 1) * vr_dim1 + 1], &c__1);
00529                 rnrm = slapy2_(&r__1, &r__2);
00530                 r__1 = snrm2_(n, &vl[ks * vl_dim1 + 1], &c__1);
00531                 r__2 = snrm2_(n, &vl[(ks + 1) * vl_dim1 + 1], &c__1);
00532                 lnrm = slapy2_(&r__1, &r__2);
00533                 sgemv_("N", n, n, &c_b19, &a[a_offset], lda, &vr[ks * vr_dim1 
00534                         + 1], &c__1, &c_b21, &work[1], &c__1);
00535                 tmprr = sdot_(n, &work[1], &c__1, &vl[ks * vl_dim1 + 1], &
00536                         c__1);
00537                 tmpri = sdot_(n, &work[1], &c__1, &vl[(ks + 1) * vl_dim1 + 1], 
00538                          &c__1);
00539                 sgemv_("N", n, n, &c_b19, &a[a_offset], lda, &vr[(ks + 1) * 
00540                         vr_dim1 + 1], &c__1, &c_b21, &work[1], &c__1);
00541                 tmpii = sdot_(n, &work[1], &c__1, &vl[(ks + 1) * vl_dim1 + 1], 
00542                          &c__1);
00543                 tmpir = sdot_(n, &work[1], &c__1, &vl[ks * vl_dim1 + 1], &
00544                         c__1);
00545                 uhav = tmprr + tmpii;
00546                 uhavi = tmpir - tmpri;
00547                 sgemv_("N", n, n, &c_b19, &b[b_offset], ldb, &vr[ks * vr_dim1 
00548                         + 1], &c__1, &c_b21, &work[1], &c__1);
00549                 tmprr = sdot_(n, &work[1], &c__1, &vl[ks * vl_dim1 + 1], &
00550                         c__1);
00551                 tmpri = sdot_(n, &work[1], &c__1, &vl[(ks + 1) * vl_dim1 + 1], 
00552                          &c__1);
00553                 sgemv_("N", n, n, &c_b19, &b[b_offset], ldb, &vr[(ks + 1) * 
00554                         vr_dim1 + 1], &c__1, &c_b21, &work[1], &c__1);
00555                 tmpii = sdot_(n, &work[1], &c__1, &vl[(ks + 1) * vl_dim1 + 1], 
00556                          &c__1);
00557                 tmpir = sdot_(n, &work[1], &c__1, &vl[ks * vl_dim1 + 1], &
00558                         c__1);
00559                 uhbv = tmprr + tmpii;
00560                 uhbvi = tmpir - tmpri;
00561                 uhav = slapy2_(&uhav, &uhavi);
00562                 uhbv = slapy2_(&uhbv, &uhbvi);
00563                 cond = slapy2_(&uhav, &uhbv);
00564                 s[ks] = cond / (rnrm * lnrm);
00565                 s[ks + 1] = s[ks];
00566 
00567             } else {
00568 
00569 /*              Real eigenvalue. */
00570 
00571                 rnrm = snrm2_(n, &vr[ks * vr_dim1 + 1], &c__1);
00572                 lnrm = snrm2_(n, &vl[ks * vl_dim1 + 1], &c__1);
00573                 sgemv_("N", n, n, &c_b19, &a[a_offset], lda, &vr[ks * vr_dim1 
00574                         + 1], &c__1, &c_b21, &work[1], &c__1);
00575                 uhav = sdot_(n, &work[1], &c__1, &vl[ks * vl_dim1 + 1], &c__1)
00576                         ;
00577                 sgemv_("N", n, n, &c_b19, &b[b_offset], ldb, &vr[ks * vr_dim1 
00578                         + 1], &c__1, &c_b21, &work[1], &c__1);
00579                 uhbv = sdot_(n, &work[1], &c__1, &vl[ks * vl_dim1 + 1], &c__1)
00580                         ;
00581                 cond = slapy2_(&uhav, &uhbv);
00582                 if (cond == 0.f) {
00583                     s[ks] = -1.f;
00584                 } else {
00585                     s[ks] = cond / (rnrm * lnrm);
00586                 }
00587             }
00588         }
00589 
00590         if (wantdf) {
00591             if (*n == 1) {
00592                 dif[ks] = slapy2_(&a[a_dim1 + 1], &b[b_dim1 + 1]);
00593                 goto L20;
00594             }
00595 
00596 /*           Estimate the reciprocal condition number of the k-th */
00597 /*           eigenvectors. */
00598             if (pair) {
00599 
00600 /*              Copy the  2-by 2 pencil beginning at (A(k,k), B(k, k)). */
00601 /*              Compute the eigenvalue(s) at position K. */
00602 
00603                 work[1] = a[k + k * a_dim1];
00604                 work[2] = a[k + 1 + k * a_dim1];
00605                 work[3] = a[k + (k + 1) * a_dim1];
00606                 work[4] = a[k + 1 + (k + 1) * a_dim1];
00607                 work[5] = b[k + k * b_dim1];
00608                 work[6] = b[k + 1 + k * b_dim1];
00609                 work[7] = b[k + (k + 1) * b_dim1];
00610                 work[8] = b[k + 1 + (k + 1) * b_dim1];
00611                 r__1 = smlnum * eps;
00612                 slag2_(&work[1], &c__2, &work[5], &c__2, &r__1, &beta, dummy1, 
00613                          &alphar, dummy, &alphai);
00614                 alprqt = 1.f;
00615                 c1 = (alphar * alphar + alphai * alphai + beta * beta) * 2.f;
00616                 c2 = beta * 4.f * beta * alphai * alphai;
00617                 root1 = c1 + sqrt(c1 * c1 - c2 * 4.f);
00618                 root2 = c2 / root1;
00619                 root1 /= 2.f;
00620 /* Computing MIN */
00621                 r__1 = sqrt(root1), r__2 = sqrt(root2);
00622                 cond = dmin(r__1,r__2);
00623             }
00624 
00625 /*           Copy the matrix (A, B) to the array WORK and swap the */
00626 /*           diagonal block beginning at A(k,k) to the (1,1) position. */
00627 
00628             slacpy_("Full", n, n, &a[a_offset], lda, &work[1], n);
00629             slacpy_("Full", n, n, &b[b_offset], ldb, &work[*n * *n + 1], n);
00630             ifst = k;
00631             ilst = 1;
00632 
00633             i__2 = *lwork - (*n << 1) * *n;
00634             stgexc_(&c_false, &c_false, n, &work[1], n, &work[*n * *n + 1], n, 
00635                      dummy, &c__1, dummy1, &c__1, &ifst, &ilst, &work[(*n * *
00636                     n << 1) + 1], &i__2, &ierr);
00637 
00638             if (ierr > 0) {
00639 
00640 /*              Ill-conditioned problem - swap rejected. */
00641 
00642                 dif[ks] = 0.f;
00643             } else {
00644 
00645 /*              Reordering successful, solve generalized Sylvester */
00646 /*              equation for R and L, */
00647 /*                         A22 * R - L * A11 = A12 */
00648 /*                         B22 * R - L * B11 = B12, */
00649 /*              and compute estimate of Difl((A11,B11), (A22, B22)). */
00650 
00651                 n1 = 1;
00652                 if (work[2] != 0.f) {
00653                     n1 = 2;
00654                 }
00655                 n2 = *n - n1;
00656                 if (n2 == 0) {
00657                     dif[ks] = cond;
00658                 } else {
00659                     i__ = *n * *n + 1;
00660                     iz = (*n << 1) * *n + 1;
00661                     i__2 = *lwork - (*n << 1) * *n;
00662                     stgsyl_("N", &c__3, &n2, &n1, &work[*n * n1 + n1 + 1], n, 
00663                             &work[1], n, &work[n1 + 1], n, &work[*n * n1 + n1 
00664                             + i__], n, &work[i__], n, &work[n1 + i__], n, &
00665                             scale, &dif[ks], &work[iz + 1], &i__2, &iwork[1], 
00666                             &ierr);
00667 
00668                     if (pair) {
00669 /* Computing MIN */
00670                         r__1 = dmax(1.f,alprqt) * dif[ks];
00671                         dif[ks] = dmin(r__1,cond);
00672                     }
00673                 }
00674             }
00675             if (pair) {
00676                 dif[ks + 1] = dif[ks];
00677             }
00678         }
00679         if (pair) {
00680             ++ks;
00681         }
00682 
00683 L20:
00684         ;
00685     }
00686     work[1] = (real) lwmin;
00687     return 0;
00688 
00689 /*     End of STGSNA */
00690 
00691 } /* stgsna_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:56:14