stftri.c
Go to the documentation of this file.
00001 /* stftri.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Table of constant values */
00017 
00018 static real c_b13 = -1.f;
00019 static real c_b18 = 1.f;
00020 
00021 /* Subroutine */ int stftri_(char *transr, char *uplo, char *diag, integer *n, 
00022          real *a, integer *info)
00023 {
00024     /* System generated locals */
00025     integer i__1, i__2;
00026 
00027     /* Local variables */
00028     integer k, n1, n2;
00029     logical normaltransr;
00030     extern logical lsame_(char *, char *);
00031     logical lower;
00032     extern /* Subroutine */ int strmm_(char *, char *, char *, char *, 
00033             integer *, integer *, real *, real *, integer *, real *, integer *
00034 ), xerbla_(char *, integer *);
00035     logical nisodd;
00036     extern /* Subroutine */ int strtri_(char *, char *, integer *, real *, 
00037             integer *, integer *);
00038 
00039 
00040 /*  -- LAPACK routine (version 3.2)                                    -- */
00041 
00042 /*  -- Contributed by Fred Gustavson of the IBM Watson Research Center -- */
00043 /*  -- November 2008                                                   -- */
00044 
00045 /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
00046 /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
00047 
00048 /*     .. Scalar Arguments .. */
00049 /*     .. */
00050 /*     .. Array Arguments .. */
00051 /*     .. */
00052 
00053 /*  Purpose */
00054 /*  ======= */
00055 
00056 /*  STFTRI computes the inverse of a triangular matrix A stored in RFP */
00057 /*  format. */
00058 
00059 /*  This is a Level 3 BLAS version of the algorithm. */
00060 
00061 /*  Arguments */
00062 /*  ========= */
00063 
00064 /*  TRANSR    (input) CHARACTER */
00065 /*          = 'N':  The Normal TRANSR of RFP A is stored; */
00066 /*          = 'T':  The Transpose TRANSR of RFP A is stored. */
00067 
00068 /*  UPLO    (input) CHARACTER */
00069 /*          = 'U':  A is upper triangular; */
00070 /*          = 'L':  A is lower triangular. */
00071 
00072 /*  DIAG    (input) CHARACTER */
00073 /*          = 'N':  A is non-unit triangular; */
00074 /*          = 'U':  A is unit triangular. */
00075 
00076 /*  N       (input) INTEGER */
00077 /*          The order of the matrix A.  N >= 0. */
00078 
00079 /*  A       (input/output) REAL array, dimension (NT); */
00080 /*          NT=N*(N+1)/2. On entry, the triangular factor of a Hermitian */
00081 /*          Positive Definite matrix A in RFP format. RFP format is */
00082 /*          described by TRANSR, UPLO, and N as follows: If TRANSR = 'N' */
00083 /*          then RFP A is (0:N,0:k-1) when N is even; k=N/2. RFP A is */
00084 /*          (0:N-1,0:k) when N is odd; k=N/2. IF TRANSR = 'T' then RFP is */
00085 /*          the transpose of RFP A as defined when */
00086 /*          TRANSR = 'N'. The contents of RFP A are defined by UPLO as */
00087 /*          follows: If UPLO = 'U' the RFP A contains the nt elements of */
00088 /*          upper packed A; If UPLO = 'L' the RFP A contains the nt */
00089 /*          elements of lower packed A. The LDA of RFP A is (N+1)/2 when */
00090 /*          TRANSR = 'T'. When TRANSR is 'N' the LDA is N+1 when N is */
00091 /*          even and N is odd. See the Note below for more details. */
00092 
00093 /*          On exit, the (triangular) inverse of the original matrix, in */
00094 /*          the same storage format. */
00095 
00096 /*  INFO    (output) INTEGER */
00097 /*          = 0: successful exit */
00098 /*          < 0: if INFO = -i, the i-th argument had an illegal value */
00099 /*          > 0: if INFO = i, A(i,i) is exactly zero.  The triangular */
00100 /*               matrix is singular and its inverse can not be computed. */
00101 
00102 /*  Notes */
00103 /*  ===== */
00104 
00105 /*  We first consider Rectangular Full Packed (RFP) Format when N is */
00106 /*  even. We give an example where N = 6. */
00107 
00108 /*      AP is Upper             AP is Lower */
00109 
00110 /*   00 01 02 03 04 05       00 */
00111 /*      11 12 13 14 15       10 11 */
00112 /*         22 23 24 25       20 21 22 */
00113 /*            33 34 35       30 31 32 33 */
00114 /*               44 45       40 41 42 43 44 */
00115 /*                  55       50 51 52 53 54 55 */
00116 
00117 
00118 /*  Let TRANSR = 'N'. RFP holds AP as follows: */
00119 /*  For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last */
00120 /*  three columns of AP upper. The lower triangle A(4:6,0:2) consists of */
00121 /*  the transpose of the first three columns of AP upper. */
00122 /*  For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first */
00123 /*  three columns of AP lower. The upper triangle A(0:2,0:2) consists of */
00124 /*  the transpose of the last three columns of AP lower. */
00125 /*  This covers the case N even and TRANSR = 'N'. */
00126 
00127 /*         RFP A                   RFP A */
00128 
00129 /*        03 04 05                33 43 53 */
00130 /*        13 14 15                00 44 54 */
00131 /*        23 24 25                10 11 55 */
00132 /*        33 34 35                20 21 22 */
00133 /*        00 44 45                30 31 32 */
00134 /*        01 11 55                40 41 42 */
00135 /*        02 12 22                50 51 52 */
00136 
00137 /*  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the */
00138 /*  transpose of RFP A above. One therefore gets: */
00139 
00140 
00141 /*           RFP A                   RFP A */
00142 
00143 /*     03 13 23 33 00 01 02    33 00 10 20 30 40 50 */
00144 /*     04 14 24 34 44 11 12    43 44 11 21 31 41 51 */
00145 /*     05 15 25 35 45 55 22    53 54 55 22 32 42 52 */
00146 
00147 
00148 /*  We first consider Rectangular Full Packed (RFP) Format when N is */
00149 /*  odd. We give an example where N = 5. */
00150 
00151 /*     AP is Upper                 AP is Lower */
00152 
00153 /*   00 01 02 03 04              00 */
00154 /*      11 12 13 14              10 11 */
00155 /*         22 23 24              20 21 22 */
00156 /*            33 34              30 31 32 33 */
00157 /*               44              40 41 42 43 44 */
00158 
00159 
00160 /*  Let TRANSR = 'N'. RFP holds AP as follows: */
00161 /*  For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last */
00162 /*  three columns of AP upper. The lower triangle A(3:4,0:1) consists of */
00163 /*  the transpose of the first two columns of AP upper. */
00164 /*  For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first */
00165 /*  three columns of AP lower. The upper triangle A(0:1,1:2) consists of */
00166 /*  the transpose of the last two columns of AP lower. */
00167 /*  This covers the case N odd and TRANSR = 'N'. */
00168 
00169 /*         RFP A                   RFP A */
00170 
00171 /*        02 03 04                00 33 43 */
00172 /*        12 13 14                10 11 44 */
00173 /*        22 23 24                20 21 22 */
00174 /*        00 33 34                30 31 32 */
00175 /*        01 11 44                40 41 42 */
00176 
00177 /*  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the */
00178 /*  transpose of RFP A above. One therefore gets: */
00179 
00180 /*           RFP A                   RFP A */
00181 
00182 /*     02 12 22 00 01             00 10 20 30 40 50 */
00183 /*     03 13 23 33 11             33 11 21 31 41 51 */
00184 /*     04 14 24 34 44             43 44 22 32 42 52 */
00185 
00186 /*  ===================================================================== */
00187 
00188 /*     .. Parameters .. */
00189 /*     .. */
00190 /*     .. Local Scalars .. */
00191 /*     .. */
00192 /*     .. External Functions .. */
00193 /*     .. */
00194 /*     .. External Subroutines .. */
00195 /*     .. */
00196 /*     .. Intrinsic Functions .. */
00197 /*     .. */
00198 /*     .. Executable Statements .. */
00199 
00200 /*     Test the input parameters. */
00201 
00202     *info = 0;
00203     normaltransr = lsame_(transr, "N");
00204     lower = lsame_(uplo, "L");
00205     if (! normaltransr && ! lsame_(transr, "T")) {
00206         *info = -1;
00207     } else if (! lower && ! lsame_(uplo, "U")) {
00208         *info = -2;
00209     } else if (! lsame_(diag, "N") && ! lsame_(diag, 
00210             "U")) {
00211         *info = -3;
00212     } else if (*n < 0) {
00213         *info = -4;
00214     }
00215     if (*info != 0) {
00216         i__1 = -(*info);
00217         xerbla_("STFTRI", &i__1);
00218         return 0;
00219     }
00220 
00221 /*     Quick return if possible */
00222 
00223     if (*n == 0) {
00224         return 0;
00225     }
00226 
00227 /*     If N is odd, set NISODD = .TRUE. */
00228 /*     If N is even, set K = N/2 and NISODD = .FALSE. */
00229 
00230     if (*n % 2 == 0) {
00231         k = *n / 2;
00232         nisodd = FALSE_;
00233     } else {
00234         nisodd = TRUE_;
00235     }
00236 
00237 /*     Set N1 and N2 depending on LOWER */
00238 
00239     if (lower) {
00240         n2 = *n / 2;
00241         n1 = *n - n2;
00242     } else {
00243         n1 = *n / 2;
00244         n2 = *n - n1;
00245     }
00246 
00247 
00248 /*     start execution: there are eight cases */
00249 
00250     if (nisodd) {
00251 
00252 /*        N is odd */
00253 
00254         if (normaltransr) {
00255 
00256 /*           N is odd and TRANSR = 'N' */
00257 
00258             if (lower) {
00259 
00260 /*             SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:n1-1) ) */
00261 /*             T1 -> a(0,0), T2 -> a(0,1), S -> a(n1,0) */
00262 /*             T1 -> a(0), T2 -> a(n), S -> a(n1) */
00263 
00264                 strtri_("L", diag, &n1, a, n, info);
00265                 if (*info > 0) {
00266                     return 0;
00267                 }
00268                 strmm_("R", "L", "N", diag, &n2, &n1, &c_b13, a, n, &a[n1], n);
00269                 strtri_("U", diag, &n2, &a[*n], n, info)
00270                         ;
00271                 if (*info > 0) {
00272                     *info += n1;
00273                 }
00274                 if (*info > 0) {
00275                     return 0;
00276                 }
00277                 strmm_("L", "U", "T", diag, &n2, &n1, &c_b18, &a[*n], n, &a[
00278                         n1], n);
00279 
00280             } else {
00281 
00282 /*             SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:n2-1) */
00283 /*             T1 -> a(n1+1,0), T2 -> a(n1,0), S -> a(0,0) */
00284 /*             T1 -> a(n2), T2 -> a(n1), S -> a(0) */
00285 
00286                 strtri_("L", diag, &n1, &a[n2], n, info)
00287                         ;
00288                 if (*info > 0) {
00289                     return 0;
00290                 }
00291                 strmm_("L", "L", "T", diag, &n1, &n2, &c_b13, &a[n2], n, a, n);
00292                 strtri_("U", diag, &n2, &a[n1], n, info)
00293                         ;
00294                 if (*info > 0) {
00295                     *info += n1;
00296                 }
00297                 if (*info > 0) {
00298                     return 0;
00299                 }
00300                 strmm_("R", "U", "N", diag, &n1, &n2, &c_b18, &a[n1], n, a, n);
00301 
00302             }
00303 
00304         } else {
00305 
00306 /*           N is odd and TRANSR = 'T' */
00307 
00308             if (lower) {
00309 
00310 /*              SRPA for LOWER, TRANSPOSE and N is odd */
00311 /*              T1 -> a(0), T2 -> a(1), S -> a(0+n1*n1) */
00312 
00313                 strtri_("U", diag, &n1, a, &n1, info);
00314                 if (*info > 0) {
00315                     return 0;
00316                 }
00317                 strmm_("L", "U", "N", diag, &n1, &n2, &c_b13, a, &n1, &a[n1 * 
00318                         n1], &n1);
00319                 strtri_("L", diag, &n2, &a[1], &n1, info);
00320                 if (*info > 0) {
00321                     *info += n1;
00322                 }
00323                 if (*info > 0) {
00324                     return 0;
00325                 }
00326                 strmm_("R", "L", "T", diag, &n1, &n2, &c_b18, &a[1], &n1, &a[
00327                         n1 * n1], &n1);
00328 
00329             } else {
00330 
00331 /*              SRPA for UPPER, TRANSPOSE and N is odd */
00332 /*              T1 -> a(0+n2*n2), T2 -> a(0+n1*n2), S -> a(0) */
00333 
00334                 strtri_("U", diag, &n1, &a[n2 * n2], &n2, info);
00335                 if (*info > 0) {
00336                     return 0;
00337                 }
00338                 strmm_("R", "U", "T", diag, &n2, &n1, &c_b13, &a[n2 * n2], &
00339                         n2, a, &n2);
00340                 strtri_("L", diag, &n2, &a[n1 * n2], &n2, info);
00341                 if (*info > 0) {
00342                     *info += n1;
00343                 }
00344                 if (*info > 0) {
00345                     return 0;
00346                 }
00347                 strmm_("L", "L", "N", diag, &n2, &n1, &c_b18, &a[n1 * n2], &
00348                         n2, a, &n2);
00349             }
00350 
00351         }
00352 
00353     } else {
00354 
00355 /*        N is even */
00356 
00357         if (normaltransr) {
00358 
00359 /*           N is even and TRANSR = 'N' */
00360 
00361             if (lower) {
00362 
00363 /*              SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) ) */
00364 /*              T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0) */
00365 /*              T1 -> a(1), T2 -> a(0), S -> a(k+1) */
00366 
00367                 i__1 = *n + 1;
00368                 strtri_("L", diag, &k, &a[1], &i__1, info);
00369                 if (*info > 0) {
00370                     return 0;
00371                 }
00372                 i__1 = *n + 1;
00373                 i__2 = *n + 1;
00374                 strmm_("R", "L", "N", diag, &k, &k, &c_b13, &a[1], &i__1, &a[
00375                         k + 1], &i__2);
00376                 i__1 = *n + 1;
00377                 strtri_("U", diag, &k, a, &i__1, info);
00378                 if (*info > 0) {
00379                     *info += k;
00380                 }
00381                 if (*info > 0) {
00382                     return 0;
00383                 }
00384                 i__1 = *n + 1;
00385                 i__2 = *n + 1;
00386                 strmm_("L", "U", "T", diag, &k, &k, &c_b18, a, &i__1, &a[k + 
00387                         1], &i__2)
00388                         ;
00389 
00390             } else {
00391 
00392 /*              SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) ) */
00393 /*              T1 -> a(k+1,0) ,  T2 -> a(k,0),   S -> a(0,0) */
00394 /*              T1 -> a(k+1), T2 -> a(k), S -> a(0) */
00395 
00396                 i__1 = *n + 1;
00397                 strtri_("L", diag, &k, &a[k + 1], &i__1, info);
00398                 if (*info > 0) {
00399                     return 0;
00400                 }
00401                 i__1 = *n + 1;
00402                 i__2 = *n + 1;
00403                 strmm_("L", "L", "T", diag, &k, &k, &c_b13, &a[k + 1], &i__1, 
00404                         a, &i__2);
00405                 i__1 = *n + 1;
00406                 strtri_("U", diag, &k, &a[k], &i__1, info);
00407                 if (*info > 0) {
00408                     *info += k;
00409                 }
00410                 if (*info > 0) {
00411                     return 0;
00412                 }
00413                 i__1 = *n + 1;
00414                 i__2 = *n + 1;
00415                 strmm_("R", "U", "N", diag, &k, &k, &c_b18, &a[k], &i__1, a, &
00416                         i__2);
00417             }
00418         } else {
00419 
00420 /*           N is even and TRANSR = 'T' */
00421 
00422             if (lower) {
00423 
00424 /*              SRPA for LOWER, TRANSPOSE and N is even (see paper) */
00425 /*              T1 -> B(0,1), T2 -> B(0,0), S -> B(0,k+1) */
00426 /*              T1 -> a(0+k), T2 -> a(0+0), S -> a(0+k*(k+1)); lda=k */
00427 
00428                 strtri_("U", diag, &k, &a[k], &k, info);
00429                 if (*info > 0) {
00430                     return 0;
00431                 }
00432                 strmm_("L", "U", "N", diag, &k, &k, &c_b13, &a[k], &k, &a[k * 
00433                         (k + 1)], &k);
00434                 strtri_("L", diag, &k, a, &k, info);
00435                 if (*info > 0) {
00436                     *info += k;
00437                 }
00438                 if (*info > 0) {
00439                     return 0;
00440                 }
00441                 strmm_("R", "L", "T", diag, &k, &k, &c_b18, a, &k, &a[k * (k 
00442                         + 1)], &k)
00443                         ;
00444             } else {
00445 
00446 /*              SRPA for UPPER, TRANSPOSE and N is even (see paper) */
00447 /*              T1 -> B(0,k+1),     T2 -> B(0,k),   S -> B(0,0) */
00448 /*              T1 -> a(0+k*(k+1)), T2 -> a(0+k*k), S -> a(0+0)); lda=k */
00449 
00450                 strtri_("U", diag, &k, &a[k * (k + 1)], &k, info);
00451                 if (*info > 0) {
00452                     return 0;
00453                 }
00454                 strmm_("R", "U", "T", diag, &k, &k, &c_b13, &a[k * (k + 1)], &
00455                         k, a, &k);
00456                 strtri_("L", diag, &k, &a[k * k], &k, info);
00457                 if (*info > 0) {
00458                     *info += k;
00459                 }
00460                 if (*info > 0) {
00461                     return 0;
00462                 }
00463                 strmm_("L", "L", "N", diag, &k, &k, &c_b18, &a[k * k], &k, a, 
00464                         &k);
00465             }
00466         }
00467     }
00468 
00469     return 0;
00470 
00471 /*     End of STFTRI */
00472 
00473 } /* stftri_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:56:14