00001 /* stbt02.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static integer c__1 = 1; 00019 static real c_b10 = -1.f; 00020 00021 /* Subroutine */ int stbt02_(char *uplo, char *trans, char *diag, integer *n, 00022 integer *kd, integer *nrhs, real *ab, integer *ldab, real *x, integer 00023 *ldx, real *b, integer *ldb, real *work, real *resid) 00024 { 00025 /* System generated locals */ 00026 integer ab_dim1, ab_offset, b_dim1, b_offset, x_dim1, x_offset, i__1; 00027 real r__1, r__2; 00028 00029 /* Local variables */ 00030 integer j; 00031 real eps; 00032 extern logical lsame_(char *, char *); 00033 real anorm, bnorm; 00034 extern doublereal sasum_(integer *, real *, integer *); 00035 extern /* Subroutine */ int stbmv_(char *, char *, char *, integer *, 00036 integer *, real *, integer *, real *, integer *), scopy_(integer *, real *, integer *, real *, integer *); 00037 real xnorm; 00038 extern /* Subroutine */ int saxpy_(integer *, real *, real *, integer *, 00039 real *, integer *); 00040 extern doublereal slamch_(char *), slantb_(char *, char *, char *, 00041 integer *, integer *, real *, integer *, real *); 00042 00043 00044 /* -- LAPACK test routine (version 3.1) -- */ 00045 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00046 /* November 2006 */ 00047 00048 /* .. Scalar Arguments .. */ 00049 /* .. */ 00050 /* .. Array Arguments .. */ 00051 /* .. */ 00052 00053 /* Purpose */ 00054 /* ======= */ 00055 00056 /* STBT02 computes the residual for the computed solution to a */ 00057 /* triangular system of linear equations A*x = b or A' *x = b when */ 00058 /* A is a triangular band matrix. Here A' is the transpose of A and */ 00059 /* x and b are N by NRHS matrices. The test ratio is the maximum over */ 00060 /* the number of right hand sides of */ 00061 /* norm(b - op(A)*x) / ( norm(op(A)) * norm(x) * EPS ), */ 00062 /* where op(A) denotes A or A' and EPS is the machine epsilon. */ 00063 00064 /* Arguments */ 00065 /* ========= */ 00066 00067 /* UPLO (input) CHARACTER*1 */ 00068 /* Specifies whether the matrix A is upper or lower triangular. */ 00069 /* = 'U': Upper triangular */ 00070 /* = 'L': Lower triangular */ 00071 00072 /* TRANS (input) CHARACTER*1 */ 00073 /* Specifies the operation applied to A. */ 00074 /* = 'N': A *x = b (No transpose) */ 00075 /* = 'T': A'*x = b (Transpose) */ 00076 /* = 'C': A'*x = b (Conjugate transpose = Transpose) */ 00077 00078 /* DIAG (input) CHARACTER*1 */ 00079 /* Specifies whether or not the matrix A is unit triangular. */ 00080 /* = 'N': Non-unit triangular */ 00081 /* = 'U': Unit triangular */ 00082 00083 /* N (input) INTEGER */ 00084 /* The order of the matrix A. N >= 0. */ 00085 00086 /* KD (input) INTEGER */ 00087 /* The number of superdiagonals or subdiagonals of the */ 00088 /* triangular band matrix A. KD >= 0. */ 00089 00090 /* NRHS (input) INTEGER */ 00091 /* The number of right hand sides, i.e., the number of columns */ 00092 /* of the matrices X and B. NRHS >= 0. */ 00093 00094 /* AB (input) REAL array, dimension (LDAB,N) */ 00095 /* The upper or lower triangular band matrix A, stored in the */ 00096 /* first kd+1 rows of the array. The j-th column of A is stored */ 00097 /* in the j-th column of the array AB as follows: */ 00098 /* if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; */ 00099 /* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). */ 00100 00101 /* LDAB (input) INTEGER */ 00102 /* The leading dimension of the array AB. LDAB >= KD+1. */ 00103 00104 /* X (input) REAL array, dimension (LDX,NRHS) */ 00105 /* The computed solution vectors for the system of linear */ 00106 /* equations. */ 00107 00108 /* LDX (input) INTEGER */ 00109 /* The leading dimension of the array X. LDX >= max(1,N). */ 00110 00111 /* B (input) REAL array, dimension (LDB,NRHS) */ 00112 /* The right hand side vectors for the system of linear */ 00113 /* equations. */ 00114 00115 /* LDB (input) INTEGER */ 00116 /* The leading dimension of the array B. LDB >= max(1,N). */ 00117 00118 /* WORK (workspace) REAL array, dimension (N) */ 00119 00120 /* RESID (output) REAL */ 00121 /* The maximum over the number of right hand sides of */ 00122 /* norm(op(A)*x - b) / ( norm(op(A)) * norm(x) * EPS ). */ 00123 00124 /* ===================================================================== */ 00125 00126 /* .. Parameters .. */ 00127 /* .. */ 00128 /* .. Local Scalars .. */ 00129 /* .. */ 00130 /* .. External Functions .. */ 00131 /* .. */ 00132 /* .. External Subroutines .. */ 00133 /* .. */ 00134 /* .. Intrinsic Functions .. */ 00135 /* .. */ 00136 /* .. Executable Statements .. */ 00137 00138 /* Quick exit if N = 0 or NRHS = 0 */ 00139 00140 /* Parameter adjustments */ 00141 ab_dim1 = *ldab; 00142 ab_offset = 1 + ab_dim1; 00143 ab -= ab_offset; 00144 x_dim1 = *ldx; 00145 x_offset = 1 + x_dim1; 00146 x -= x_offset; 00147 b_dim1 = *ldb; 00148 b_offset = 1 + b_dim1; 00149 b -= b_offset; 00150 --work; 00151 00152 /* Function Body */ 00153 if (*n <= 0 || *nrhs <= 0) { 00154 *resid = 0.f; 00155 return 0; 00156 } 00157 00158 /* Compute the 1-norm of A or A'. */ 00159 00160 if (lsame_(trans, "N")) { 00161 anorm = slantb_("1", uplo, diag, n, kd, &ab[ab_offset], ldab, &work[1] 00162 ); 00163 } else { 00164 anorm = slantb_("I", uplo, diag, n, kd, &ab[ab_offset], ldab, &work[1] 00165 ); 00166 } 00167 00168 /* Exit with RESID = 1/EPS if ANORM = 0. */ 00169 00170 eps = slamch_("Epsilon"); 00171 if (anorm <= 0.f) { 00172 *resid = 1.f / eps; 00173 return 0; 00174 } 00175 00176 /* Compute the maximum over the number of right hand sides of */ 00177 /* norm(op(A)*x - b) / ( norm(op(A)) * norm(x) * EPS ). */ 00178 00179 *resid = 0.f; 00180 i__1 = *nrhs; 00181 for (j = 1; j <= i__1; ++j) { 00182 scopy_(n, &x[j * x_dim1 + 1], &c__1, &work[1], &c__1); 00183 stbmv_(uplo, trans, diag, n, kd, &ab[ab_offset], ldab, &work[1], & 00184 c__1); 00185 saxpy_(n, &c_b10, &b[j * b_dim1 + 1], &c__1, &work[1], &c__1); 00186 bnorm = sasum_(n, &work[1], &c__1); 00187 xnorm = sasum_(n, &x[j * x_dim1 + 1], &c__1); 00188 if (xnorm <= 0.f) { 00189 *resid = 1.f / eps; 00190 } else { 00191 /* Computing MAX */ 00192 r__1 = *resid, r__2 = bnorm / anorm / xnorm / eps; 00193 *resid = dmax(r__1,r__2); 00194 } 00195 /* L10: */ 00196 } 00197 00198 return 0; 00199 00200 /* End of STBT02 */ 00201 00202 } /* stbt02_ */