ssygvd.c
Go to the documentation of this file.
00001 /* ssygvd.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Table of constant values */
00017 
00018 static real c_b11 = 1.f;
00019 
00020 /* Subroutine */ int ssygvd_(integer *itype, char *jobz, char *uplo, integer *
00021         n, real *a, integer *lda, real *b, integer *ldb, real *w, real *work, 
00022         integer *lwork, integer *iwork, integer *liwork, integer *info)
00023 {
00024     /* System generated locals */
00025     integer a_dim1, a_offset, b_dim1, b_offset, i__1;
00026     real r__1, r__2;
00027 
00028     /* Local variables */
00029     integer lopt;
00030     extern logical lsame_(char *, char *);
00031     integer lwmin;
00032     char trans[1];
00033     integer liopt;
00034     logical upper;
00035     extern /* Subroutine */ int strmm_(char *, char *, char *, char *, 
00036             integer *, integer *, real *, real *, integer *, real *, integer *
00037 );
00038     logical wantz;
00039     extern /* Subroutine */ int strsm_(char *, char *, char *, char *, 
00040             integer *, integer *, real *, real *, integer *, real *, integer *
00041 ), xerbla_(char *, integer *);
00042     integer liwmin;
00043     extern /* Subroutine */ int spotrf_(char *, integer *, real *, integer *, 
00044             integer *), ssyevd_(char *, char *, integer *, real *, 
00045             integer *, real *, real *, integer *, integer *, integer *, 
00046             integer *);
00047     logical lquery;
00048     extern /* Subroutine */ int ssygst_(integer *, char *, integer *, real *, 
00049             integer *, real *, integer *, integer *);
00050 
00051 
00052 /*  -- LAPACK driver routine (version 3.2) -- */
00053 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00054 /*     November 2006 */
00055 
00056 /*     .. Scalar Arguments .. */
00057 /*     .. */
00058 /*     .. Array Arguments .. */
00059 /*     .. */
00060 
00061 /*  Purpose */
00062 /*  ======= */
00063 
00064 /*  SSYGVD computes all the eigenvalues, and optionally, the eigenvectors */
00065 /*  of a real generalized symmetric-definite eigenproblem, of the form */
00066 /*  A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A and */
00067 /*  B are assumed to be symmetric and B is also positive definite. */
00068 /*  If eigenvectors are desired, it uses a divide and conquer algorithm. */
00069 
00070 /*  The divide and conquer algorithm makes very mild assumptions about */
00071 /*  floating point arithmetic. It will work on machines with a guard */
00072 /*  digit in add/subtract, or on those binary machines without guard */
00073 /*  digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or */
00074 /*  Cray-2. It could conceivably fail on hexadecimal or decimal machines */
00075 /*  without guard digits, but we know of none. */
00076 
00077 /*  Arguments */
00078 /*  ========= */
00079 
00080 /*  ITYPE   (input) INTEGER */
00081 /*          Specifies the problem type to be solved: */
00082 /*          = 1:  A*x = (lambda)*B*x */
00083 /*          = 2:  A*B*x = (lambda)*x */
00084 /*          = 3:  B*A*x = (lambda)*x */
00085 
00086 /*  JOBZ    (input) CHARACTER*1 */
00087 /*          = 'N':  Compute eigenvalues only; */
00088 /*          = 'V':  Compute eigenvalues and eigenvectors. */
00089 
00090 /*  UPLO    (input) CHARACTER*1 */
00091 /*          = 'U':  Upper triangles of A and B are stored; */
00092 /*          = 'L':  Lower triangles of A and B are stored. */
00093 
00094 /*  N       (input) INTEGER */
00095 /*          The order of the matrices A and B.  N >= 0. */
00096 
00097 /*  A       (input/output) REAL array, dimension (LDA, N) */
00098 /*          On entry, the symmetric matrix A.  If UPLO = 'U', the */
00099 /*          leading N-by-N upper triangular part of A contains the */
00100 /*          upper triangular part of the matrix A.  If UPLO = 'L', */
00101 /*          the leading N-by-N lower triangular part of A contains */
00102 /*          the lower triangular part of the matrix A. */
00103 
00104 /*          On exit, if JOBZ = 'V', then if INFO = 0, A contains the */
00105 /*          matrix Z of eigenvectors.  The eigenvectors are normalized */
00106 /*          as follows: */
00107 /*          if ITYPE = 1 or 2, Z**T*B*Z = I; */
00108 /*          if ITYPE = 3, Z**T*inv(B)*Z = I. */
00109 /*          If JOBZ = 'N', then on exit the upper triangle (if UPLO='U') */
00110 /*          or the lower triangle (if UPLO='L') of A, including the */
00111 /*          diagonal, is destroyed. */
00112 
00113 /*  LDA     (input) INTEGER */
00114 /*          The leading dimension of the array A.  LDA >= max(1,N). */
00115 
00116 /*  B       (input/output) REAL array, dimension (LDB, N) */
00117 /*          On entry, the symmetric matrix B.  If UPLO = 'U', the */
00118 /*          leading N-by-N upper triangular part of B contains the */
00119 /*          upper triangular part of the matrix B.  If UPLO = 'L', */
00120 /*          the leading N-by-N lower triangular part of B contains */
00121 /*          the lower triangular part of the matrix B. */
00122 
00123 /*          On exit, if INFO <= N, the part of B containing the matrix is */
00124 /*          overwritten by the triangular factor U or L from the Cholesky */
00125 /*          factorization B = U**T*U or B = L*L**T. */
00126 
00127 /*  LDB     (input) INTEGER */
00128 /*          The leading dimension of the array B.  LDB >= max(1,N). */
00129 
00130 /*  W       (output) REAL array, dimension (N) */
00131 /*          If INFO = 0, the eigenvalues in ascending order. */
00132 
00133 /*  WORK    (workspace/output) REAL array, dimension (MAX(1,LWORK)) */
00134 /*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
00135 
00136 /*  LWORK   (input) INTEGER */
00137 /*          The dimension of the array WORK. */
00138 /*          If N <= 1,               LWORK >= 1. */
00139 /*          If JOBZ = 'N' and N > 1, LWORK >= 2*N+1. */
00140 /*          If JOBZ = 'V' and N > 1, LWORK >= 1 + 6*N + 2*N**2. */
00141 
00142 /*          If LWORK = -1, then a workspace query is assumed; the routine */
00143 /*          only calculates the optimal sizes of the WORK and IWORK */
00144 /*          arrays, returns these values as the first entries of the WORK */
00145 /*          and IWORK arrays, and no error message related to LWORK or */
00146 /*          LIWORK is issued by XERBLA. */
00147 
00148 /*  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) */
00149 /*          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */
00150 
00151 /*  LIWORK  (input) INTEGER */
00152 /*          The dimension of the array IWORK. */
00153 /*          If N <= 1,                LIWORK >= 1. */
00154 /*          If JOBZ  = 'N' and N > 1, LIWORK >= 1. */
00155 /*          If JOBZ  = 'V' and N > 1, LIWORK >= 3 + 5*N. */
00156 
00157 /*          If LIWORK = -1, then a workspace query is assumed; the */
00158 /*          routine only calculates the optimal sizes of the WORK and */
00159 /*          IWORK arrays, returns these values as the first entries of */
00160 /*          the WORK and IWORK arrays, and no error message related to */
00161 /*          LWORK or LIWORK is issued by XERBLA. */
00162 
00163 /*  INFO    (output) INTEGER */
00164 /*          = 0:  successful exit */
00165 /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
00166 /*          > 0:  SPOTRF or SSYEVD returned an error code: */
00167 /*             <= N:  if INFO = i and JOBZ = 'N', then the algorithm */
00168 /*                    failed to converge; i off-diagonal elements of an */
00169 /*                    intermediate tridiagonal form did not converge to */
00170 /*                    zero; */
00171 /*                    if INFO = i and JOBZ = 'V', then the algorithm */
00172 /*                    failed to compute an eigenvalue while working on */
00173 /*                    the submatrix lying in rows and columns INFO/(N+1) */
00174 /*                    through mod(INFO,N+1); */
00175 /*             > N:   if INFO = N + i, for 1 <= i <= N, then the leading */
00176 /*                    minor of order i of B is not positive definite. */
00177 /*                    The factorization of B could not be completed and */
00178 /*                    no eigenvalues or eigenvectors were computed. */
00179 
00180 /*  Further Details */
00181 /*  =============== */
00182 
00183 /*  Based on contributions by */
00184 /*     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA */
00185 
00186 /*  Modified so that no backsubstitution is performed if SSYEVD fails to */
00187 /*  converge (NEIG in old code could be greater than N causing out of */
00188 /*  bounds reference to A - reported by Ralf Meyer).  Also corrected the */
00189 /*  description of INFO and the test on ITYPE. Sven, 16 Feb 05. */
00190 /*  ===================================================================== */
00191 
00192 /*     .. Parameters .. */
00193 /*     .. */
00194 /*     .. Local Scalars .. */
00195 /*     .. */
00196 /*     .. External Functions .. */
00197 /*     .. */
00198 /*     .. External Subroutines .. */
00199 /*     .. */
00200 /*     .. Intrinsic Functions .. */
00201 /*     .. */
00202 /*     .. Executable Statements .. */
00203 
00204 /*     Test the input parameters. */
00205 
00206     /* Parameter adjustments */
00207     a_dim1 = *lda;
00208     a_offset = 1 + a_dim1;
00209     a -= a_offset;
00210     b_dim1 = *ldb;
00211     b_offset = 1 + b_dim1;
00212     b -= b_offset;
00213     --w;
00214     --work;
00215     --iwork;
00216 
00217     /* Function Body */
00218     wantz = lsame_(jobz, "V");
00219     upper = lsame_(uplo, "U");
00220     lquery = *lwork == -1 || *liwork == -1;
00221 
00222     *info = 0;
00223     if (*n <= 1) {
00224         liwmin = 1;
00225         lwmin = 1;
00226     } else if (wantz) {
00227         liwmin = *n * 5 + 3;
00228 /* Computing 2nd power */
00229         i__1 = *n;
00230         lwmin = *n * 6 + 1 + (i__1 * i__1 << 1);
00231     } else {
00232         liwmin = 1;
00233         lwmin = (*n << 1) + 1;
00234     }
00235     lopt = lwmin;
00236     liopt = liwmin;
00237     if (*itype < 1 || *itype > 3) {
00238         *info = -1;
00239     } else if (! (wantz || lsame_(jobz, "N"))) {
00240         *info = -2;
00241     } else if (! (upper || lsame_(uplo, "L"))) {
00242         *info = -3;
00243     } else if (*n < 0) {
00244         *info = -4;
00245     } else if (*lda < max(1,*n)) {
00246         *info = -6;
00247     } else if (*ldb < max(1,*n)) {
00248         *info = -8;
00249     }
00250 
00251     if (*info == 0) {
00252         work[1] = (real) lopt;
00253         iwork[1] = liopt;
00254 
00255         if (*lwork < lwmin && ! lquery) {
00256             *info = -11;
00257         } else if (*liwork < liwmin && ! lquery) {
00258             *info = -13;
00259         }
00260     }
00261 
00262     if (*info != 0) {
00263         i__1 = -(*info);
00264         xerbla_("SSYGVD", &i__1);
00265         return 0;
00266     } else if (lquery) {
00267         return 0;
00268     }
00269 
00270 /*     Quick return if possible */
00271 
00272     if (*n == 0) {
00273         return 0;
00274     }
00275 
00276 /*     Form a Cholesky factorization of B. */
00277 
00278     spotrf_(uplo, n, &b[b_offset], ldb, info);
00279     if (*info != 0) {
00280         *info = *n + *info;
00281         return 0;
00282     }
00283 
00284 /*     Transform problem to standard eigenvalue problem and solve. */
00285 
00286     ssygst_(itype, uplo, n, &a[a_offset], lda, &b[b_offset], ldb, info);
00287     ssyevd_(jobz, uplo, n, &a[a_offset], lda, &w[1], &work[1], lwork, &iwork[
00288             1], liwork, info);
00289 /* Computing MAX */
00290     r__1 = (real) lopt;
00291     lopt = dmax(r__1,work[1]);
00292 /* Computing MAX */
00293     r__1 = (real) liopt, r__2 = (real) iwork[1];
00294     liopt = dmax(r__1,r__2);
00295 
00296     if (wantz && *info == 0) {
00297 
00298 /*        Backtransform eigenvectors to the original problem. */
00299 
00300         if (*itype == 1 || *itype == 2) {
00301 
00302 /*           For A*x=(lambda)*B*x and A*B*x=(lambda)*x; */
00303 /*           backtransform eigenvectors: x = inv(L)'*y or inv(U)*y */
00304 
00305             if (upper) {
00306                 *(unsigned char *)trans = 'N';
00307             } else {
00308                 *(unsigned char *)trans = 'T';
00309             }
00310 
00311             strsm_("Left", uplo, trans, "Non-unit", n, n, &c_b11, &b[b_offset]
00312 , ldb, &a[a_offset], lda);
00313 
00314         } else if (*itype == 3) {
00315 
00316 /*           For B*A*x=(lambda)*x; */
00317 /*           backtransform eigenvectors: x = L*y or U'*y */
00318 
00319             if (upper) {
00320                 *(unsigned char *)trans = 'T';
00321             } else {
00322                 *(unsigned char *)trans = 'N';
00323             }
00324 
00325             strmm_("Left", uplo, trans, "Non-unit", n, n, &c_b11, &b[b_offset]
00326 , ldb, &a[a_offset], lda);
00327         }
00328     }
00329 
00330     work[1] = (real) lopt;
00331     iwork[1] = liopt;
00332 
00333     return 0;
00334 
00335 /*     End of SSYGVD */
00336 
00337 } /* ssygvd_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:56:14