00001 /* ssycon.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static integer c__1 = 1; 00019 00020 /* Subroutine */ int ssycon_(char *uplo, integer *n, real *a, integer *lda, 00021 integer *ipiv, real *anorm, real *rcond, real *work, integer *iwork, 00022 integer *info) 00023 { 00024 /* System generated locals */ 00025 integer a_dim1, a_offset, i__1; 00026 00027 /* Local variables */ 00028 integer i__, kase; 00029 extern logical lsame_(char *, char *); 00030 integer isave[3]; 00031 logical upper; 00032 extern /* Subroutine */ int slacn2_(integer *, real *, real *, integer *, 00033 real *, integer *, integer *), xerbla_(char *, integer *); 00034 real ainvnm; 00035 extern /* Subroutine */ int ssytrs_(char *, integer *, integer *, real *, 00036 integer *, integer *, real *, integer *, integer *); 00037 00038 00039 /* -- LAPACK routine (version 3.2) -- */ 00040 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00041 /* November 2006 */ 00042 00043 /* Modified to call SLACN2 in place of SLACON, 7 Feb 03, SJH. */ 00044 00045 /* .. Scalar Arguments .. */ 00046 /* .. */ 00047 /* .. Array Arguments .. */ 00048 /* .. */ 00049 00050 /* Purpose */ 00051 /* ======= */ 00052 00053 /* SSYCON estimates the reciprocal of the condition number (in the */ 00054 /* 1-norm) of a real symmetric matrix A using the factorization */ 00055 /* A = U*D*U**T or A = L*D*L**T computed by SSYTRF. */ 00056 00057 /* An estimate is obtained for norm(inv(A)), and the reciprocal of the */ 00058 /* condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))). */ 00059 00060 /* Arguments */ 00061 /* ========= */ 00062 00063 /* UPLO (input) CHARACTER*1 */ 00064 /* Specifies whether the details of the factorization are stored */ 00065 /* as an upper or lower triangular matrix. */ 00066 /* = 'U': Upper triangular, form is A = U*D*U**T; */ 00067 /* = 'L': Lower triangular, form is A = L*D*L**T. */ 00068 00069 /* N (input) INTEGER */ 00070 /* The order of the matrix A. N >= 0. */ 00071 00072 /* A (input) REAL array, dimension (LDA,N) */ 00073 /* The block diagonal matrix D and the multipliers used to */ 00074 /* obtain the factor U or L as computed by SSYTRF. */ 00075 00076 /* LDA (input) INTEGER */ 00077 /* The leading dimension of the array A. LDA >= max(1,N). */ 00078 00079 /* IPIV (input) INTEGER array, dimension (N) */ 00080 /* Details of the interchanges and the block structure of D */ 00081 /* as determined by SSYTRF. */ 00082 00083 /* ANORM (input) REAL */ 00084 /* The 1-norm of the original matrix A. */ 00085 00086 /* RCOND (output) REAL */ 00087 /* The reciprocal of the condition number of the matrix A, */ 00088 /* computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an */ 00089 /* estimate of the 1-norm of inv(A) computed in this routine. */ 00090 00091 /* WORK (workspace) REAL array, dimension (2*N) */ 00092 00093 /* IWORK (workspace) INTEGER array, dimension (N) */ 00094 00095 /* INFO (output) INTEGER */ 00096 /* = 0: successful exit */ 00097 /* < 0: if INFO = -i, the i-th argument had an illegal value */ 00098 00099 /* ===================================================================== */ 00100 00101 /* .. Parameters .. */ 00102 /* .. */ 00103 /* .. Local Scalars .. */ 00104 /* .. */ 00105 /* .. Local Arrays .. */ 00106 /* .. */ 00107 /* .. External Functions .. */ 00108 /* .. */ 00109 /* .. External Subroutines .. */ 00110 /* .. */ 00111 /* .. Intrinsic Functions .. */ 00112 /* .. */ 00113 /* .. Executable Statements .. */ 00114 00115 /* Test the input parameters. */ 00116 00117 /* Parameter adjustments */ 00118 a_dim1 = *lda; 00119 a_offset = 1 + a_dim1; 00120 a -= a_offset; 00121 --ipiv; 00122 --work; 00123 --iwork; 00124 00125 /* Function Body */ 00126 *info = 0; 00127 upper = lsame_(uplo, "U"); 00128 if (! upper && ! lsame_(uplo, "L")) { 00129 *info = -1; 00130 } else if (*n < 0) { 00131 *info = -2; 00132 } else if (*lda < max(1,*n)) { 00133 *info = -4; 00134 } else if (*anorm < 0.f) { 00135 *info = -6; 00136 } 00137 if (*info != 0) { 00138 i__1 = -(*info); 00139 xerbla_("SSYCON", &i__1); 00140 return 0; 00141 } 00142 00143 /* Quick return if possible */ 00144 00145 *rcond = 0.f; 00146 if (*n == 0) { 00147 *rcond = 1.f; 00148 return 0; 00149 } else if (*anorm <= 0.f) { 00150 return 0; 00151 } 00152 00153 /* Check that the diagonal matrix D is nonsingular. */ 00154 00155 if (upper) { 00156 00157 /* Upper triangular storage: examine D from bottom to top */ 00158 00159 for (i__ = *n; i__ >= 1; --i__) { 00160 if (ipiv[i__] > 0 && a[i__ + i__ * a_dim1] == 0.f) { 00161 return 0; 00162 } 00163 /* L10: */ 00164 } 00165 } else { 00166 00167 /* Lower triangular storage: examine D from top to bottom. */ 00168 00169 i__1 = *n; 00170 for (i__ = 1; i__ <= i__1; ++i__) { 00171 if (ipiv[i__] > 0 && a[i__ + i__ * a_dim1] == 0.f) { 00172 return 0; 00173 } 00174 /* L20: */ 00175 } 00176 } 00177 00178 /* Estimate the 1-norm of the inverse. */ 00179 00180 kase = 0; 00181 L30: 00182 slacn2_(n, &work[*n + 1], &work[1], &iwork[1], &ainvnm, &kase, isave); 00183 if (kase != 0) { 00184 00185 /* Multiply by inv(L*D*L') or inv(U*D*U'). */ 00186 00187 ssytrs_(uplo, n, &c__1, &a[a_offset], lda, &ipiv[1], &work[1], n, 00188 info); 00189 goto L30; 00190 } 00191 00192 /* Compute the estimate of the reciprocal condition number. */ 00193 00194 if (ainvnm != 0.f) { 00195 *rcond = 1.f / ainvnm / *anorm; 00196 } 00197 00198 return 0; 00199 00200 /* End of SSYCON */ 00201 00202 } /* ssycon_ */