00001 /* sstevd.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static integer c__1 = 1; 00019 00020 /* Subroutine */ int sstevd_(char *jobz, integer *n, real *d__, real *e, real 00021 *z__, integer *ldz, real *work, integer *lwork, integer *iwork, 00022 integer *liwork, integer *info) 00023 { 00024 /* System generated locals */ 00025 integer z_dim1, z_offset, i__1; 00026 real r__1; 00027 00028 /* Builtin functions */ 00029 double sqrt(doublereal); 00030 00031 /* Local variables */ 00032 real eps, rmin, rmax, tnrm, sigma; 00033 extern logical lsame_(char *, char *); 00034 extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *); 00035 integer lwmin; 00036 logical wantz; 00037 integer iscale; 00038 extern doublereal slamch_(char *); 00039 real safmin; 00040 extern /* Subroutine */ int xerbla_(char *, integer *); 00041 real bignum; 00042 extern /* Subroutine */ int sstedc_(char *, integer *, real *, real *, 00043 real *, integer *, real *, integer *, integer *, integer *, 00044 integer *); 00045 integer liwmin; 00046 extern doublereal slanst_(char *, integer *, real *, real *); 00047 extern /* Subroutine */ int ssterf_(integer *, real *, real *, integer *); 00048 real smlnum; 00049 logical lquery; 00050 00051 00052 /* -- LAPACK driver routine (version 3.2) -- */ 00053 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00054 /* November 2006 */ 00055 00056 /* .. Scalar Arguments .. */ 00057 /* .. */ 00058 /* .. Array Arguments .. */ 00059 /* .. */ 00060 00061 /* Purpose */ 00062 /* ======= */ 00063 00064 /* SSTEVD computes all eigenvalues and, optionally, eigenvectors of a */ 00065 /* real symmetric tridiagonal matrix. If eigenvectors are desired, it */ 00066 /* uses a divide and conquer algorithm. */ 00067 00068 /* The divide and conquer algorithm makes very mild assumptions about */ 00069 /* floating point arithmetic. It will work on machines with a guard */ 00070 /* digit in add/subtract, or on those binary machines without guard */ 00071 /* digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or */ 00072 /* Cray-2. It could conceivably fail on hexadecimal or decimal machines */ 00073 /* without guard digits, but we know of none. */ 00074 00075 /* Arguments */ 00076 /* ========= */ 00077 00078 /* JOBZ (input) CHARACTER*1 */ 00079 /* = 'N': Compute eigenvalues only; */ 00080 /* = 'V': Compute eigenvalues and eigenvectors. */ 00081 00082 /* N (input) INTEGER */ 00083 /* The order of the matrix. N >= 0. */ 00084 00085 /* D (input/output) REAL array, dimension (N) */ 00086 /* On entry, the n diagonal elements of the tridiagonal matrix */ 00087 /* A. */ 00088 /* On exit, if INFO = 0, the eigenvalues in ascending order. */ 00089 00090 /* E (input/output) REAL array, dimension (N-1) */ 00091 /* On entry, the (n-1) subdiagonal elements of the tridiagonal */ 00092 /* matrix A, stored in elements 1 to N-1 of E. */ 00093 /* On exit, the contents of E are destroyed. */ 00094 00095 /* Z (output) REAL array, dimension (LDZ, N) */ 00096 /* If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal */ 00097 /* eigenvectors of the matrix A, with the i-th column of Z */ 00098 /* holding the eigenvector associated with D(i). */ 00099 /* If JOBZ = 'N', then Z is not referenced. */ 00100 00101 /* LDZ (input) INTEGER */ 00102 /* The leading dimension of the array Z. LDZ >= 1, and if */ 00103 /* JOBZ = 'V', LDZ >= max(1,N). */ 00104 00105 /* WORK (workspace/output) REAL array, */ 00106 /* dimension (LWORK) */ 00107 /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ 00108 00109 /* LWORK (input) INTEGER */ 00110 /* The dimension of the array WORK. */ 00111 /* If JOBZ = 'N' or N <= 1 then LWORK must be at least 1. */ 00112 /* If JOBZ = 'V' and N > 1 then LWORK must be at least */ 00113 /* ( 1 + 4*N + N**2 ). */ 00114 00115 /* If LWORK = -1, then a workspace query is assumed; the routine */ 00116 /* only calculates the optimal sizes of the WORK and IWORK */ 00117 /* arrays, returns these values as the first entries of the WORK */ 00118 /* and IWORK arrays, and no error message related to LWORK or */ 00119 /* LIWORK is issued by XERBLA. */ 00120 00121 /* IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) */ 00122 /* On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */ 00123 00124 /* LIWORK (input) INTEGER */ 00125 /* The dimension of the array IWORK. */ 00126 /* If JOBZ = 'N' or N <= 1 then LIWORK must be at least 1. */ 00127 /* If JOBZ = 'V' and N > 1 then LIWORK must be at least 3+5*N. */ 00128 00129 /* If LIWORK = -1, then a workspace query is assumed; the */ 00130 /* routine only calculates the optimal sizes of the WORK and */ 00131 /* IWORK arrays, returns these values as the first entries of */ 00132 /* the WORK and IWORK arrays, and no error message related to */ 00133 /* LWORK or LIWORK is issued by XERBLA. */ 00134 00135 /* INFO (output) INTEGER */ 00136 /* = 0: successful exit */ 00137 /* < 0: if INFO = -i, the i-th argument had an illegal value */ 00138 /* > 0: if INFO = i, the algorithm failed to converge; i */ 00139 /* off-diagonal elements of E did not converge to zero. */ 00140 00141 /* ===================================================================== */ 00142 00143 /* .. Parameters .. */ 00144 /* .. */ 00145 /* .. Local Scalars .. */ 00146 /* .. */ 00147 /* .. External Functions .. */ 00148 /* .. */ 00149 /* .. External Subroutines .. */ 00150 /* .. */ 00151 /* .. Intrinsic Functions .. */ 00152 /* .. */ 00153 /* .. Executable Statements .. */ 00154 00155 /* Test the input parameters. */ 00156 00157 /* Parameter adjustments */ 00158 --d__; 00159 --e; 00160 z_dim1 = *ldz; 00161 z_offset = 1 + z_dim1; 00162 z__ -= z_offset; 00163 --work; 00164 --iwork; 00165 00166 /* Function Body */ 00167 wantz = lsame_(jobz, "V"); 00168 lquery = *lwork == -1 || *liwork == -1; 00169 00170 *info = 0; 00171 liwmin = 1; 00172 lwmin = 1; 00173 if (*n > 1 && wantz) { 00174 /* Computing 2nd power */ 00175 i__1 = *n; 00176 lwmin = (*n << 2) + 1 + i__1 * i__1; 00177 liwmin = *n * 5 + 3; 00178 } 00179 00180 if (! (wantz || lsame_(jobz, "N"))) { 00181 *info = -1; 00182 } else if (*n < 0) { 00183 *info = -2; 00184 } else if (*ldz < 1 || wantz && *ldz < *n) { 00185 *info = -6; 00186 } 00187 00188 if (*info == 0) { 00189 work[1] = (real) lwmin; 00190 iwork[1] = liwmin; 00191 00192 if (*lwork < lwmin && ! lquery) { 00193 *info = -8; 00194 } else if (*liwork < liwmin && ! lquery) { 00195 *info = -10; 00196 } 00197 } 00198 00199 if (*info != 0) { 00200 i__1 = -(*info); 00201 xerbla_("SSTEVD", &i__1); 00202 return 0; 00203 } else if (lquery) { 00204 return 0; 00205 } 00206 00207 /* Quick return if possible */ 00208 00209 if (*n == 0) { 00210 return 0; 00211 } 00212 00213 if (*n == 1) { 00214 if (wantz) { 00215 z__[z_dim1 + 1] = 1.f; 00216 } 00217 return 0; 00218 } 00219 00220 /* Get machine constants. */ 00221 00222 safmin = slamch_("Safe minimum"); 00223 eps = slamch_("Precision"); 00224 smlnum = safmin / eps; 00225 bignum = 1.f / smlnum; 00226 rmin = sqrt(smlnum); 00227 rmax = sqrt(bignum); 00228 00229 /* Scale matrix to allowable range, if necessary. */ 00230 00231 iscale = 0; 00232 tnrm = slanst_("M", n, &d__[1], &e[1]); 00233 if (tnrm > 0.f && tnrm < rmin) { 00234 iscale = 1; 00235 sigma = rmin / tnrm; 00236 } else if (tnrm > rmax) { 00237 iscale = 1; 00238 sigma = rmax / tnrm; 00239 } 00240 if (iscale == 1) { 00241 sscal_(n, &sigma, &d__[1], &c__1); 00242 i__1 = *n - 1; 00243 sscal_(&i__1, &sigma, &e[1], &c__1); 00244 } 00245 00246 /* For eigenvalues only, call SSTERF. For eigenvalues and */ 00247 /* eigenvectors, call SSTEDC. */ 00248 00249 if (! wantz) { 00250 ssterf_(n, &d__[1], &e[1], info); 00251 } else { 00252 sstedc_("I", n, &d__[1], &e[1], &z__[z_offset], ldz, &work[1], lwork, 00253 &iwork[1], liwork, info); 00254 } 00255 00256 /* If matrix was scaled, then rescale eigenvalues appropriately. */ 00257 00258 if (iscale == 1) { 00259 r__1 = 1.f / sigma; 00260 sscal_(n, &r__1, &d__[1], &c__1); 00261 } 00262 00263 work[1] = (real) lwmin; 00264 iwork[1] = liwmin; 00265 00266 return 0; 00267 00268 /* End of SSTEVD */ 00269 00270 } /* sstevd_ */