sspt01.c
Go to the documentation of this file.
00001 /* sspt01.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Table of constant values */
00017 
00018 static real c_b5 = 0.f;
00019 static real c_b6 = 1.f;
00020 
00021 /* Subroutine */ int sspt01_(char *uplo, integer *n, real *a, real *afac, 
00022         integer *ipiv, real *c__, integer *ldc, real *rwork, real *resid)
00023 {
00024     /* System generated locals */
00025     integer c_dim1, c_offset, i__1, i__2;
00026 
00027     /* Local variables */
00028     integer i__, j, jc;
00029     real eps;
00030     integer info;
00031     extern logical lsame_(char *, char *);
00032     real anorm;
00033     extern doublereal slamch_(char *);
00034     extern /* Subroutine */ int slaset_(char *, integer *, integer *, real *, 
00035             real *, real *, integer *);
00036     extern doublereal slansp_(char *, char *, integer *, real *, real *);
00037     extern /* Subroutine */ int slavsp_(char *, char *, char *, integer *, 
00038             integer *, real *, integer *, real *, integer *, integer *);
00039     extern doublereal slansy_(char *, char *, integer *, real *, integer *, 
00040             real *);
00041 
00042 
00043 /*  -- LAPACK test routine (version 3.1) -- */
00044 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00045 /*     November 2006 */
00046 
00047 /*     .. Scalar Arguments .. */
00048 /*     .. */
00049 /*     .. Array Arguments .. */
00050 /*     .. */
00051 
00052 /*  Purpose */
00053 /*  ======= */
00054 
00055 /*  SSPT01 reconstructs a symmetric indefinite packed matrix A from its */
00056 /*  block L*D*L' or U*D*U' factorization and computes the residual */
00057 /*       norm( C - A ) / ( N * norm(A) * EPS ), */
00058 /*  where C is the reconstructed matrix and EPS is the machine epsilon. */
00059 
00060 /*  Arguments */
00061 /*  ========== */
00062 
00063 /*  UPLO    (input) CHARACTER*1 */
00064 /*          Specifies whether the upper or lower triangular part of the */
00065 /*          symmetric matrix A is stored: */
00066 /*          = 'U':  Upper triangular */
00067 /*          = 'L':  Lower triangular */
00068 
00069 /*  N       (input) INTEGER */
00070 /*          The number of rows and columns of the matrix A.  N >= 0. */
00071 
00072 /*  A       (input) REAL array, dimension (N*(N+1)/2) */
00073 /*          The original symmetric matrix A, stored as a packed */
00074 /*          triangular matrix. */
00075 
00076 /*  AFAC    (input) REAL array, dimension (N*(N+1)/2) */
00077 /*          The factored form of the matrix A, stored as a packed */
00078 /*          triangular matrix.  AFAC contains the block diagonal matrix D */
00079 /*          and the multipliers used to obtain the factor L or U from the */
00080 /*          block L*D*L' or U*D*U' factorization as computed by SSPTRF. */
00081 
00082 /*  IPIV    (input) INTEGER array, dimension (N) */
00083 /*          The pivot indices from SSPTRF. */
00084 
00085 /*  C       (workspace) REAL array, dimension (LDC,N) */
00086 
00087 /*  LDC     (integer) INTEGER */
00088 /*          The leading dimension of the array C.  LDC >= max(1,N). */
00089 
00090 /*  RWORK   (workspace) REAL array, dimension (N) */
00091 
00092 /*  RESID   (output) REAL */
00093 /*          If UPLO = 'L', norm(L*D*L' - A) / ( N * norm(A) * EPS ) */
00094 /*          If UPLO = 'U', norm(U*D*U' - A) / ( N * norm(A) * EPS ) */
00095 
00096 /*  ===================================================================== */
00097 
00098 /*     .. Parameters .. */
00099 /*     .. */
00100 /*     .. Local Scalars .. */
00101 /*     .. */
00102 /*     .. External Functions .. */
00103 /*     .. */
00104 /*     .. External Subroutines .. */
00105 /*     .. */
00106 /*     .. Intrinsic Functions .. */
00107 /*     .. */
00108 /*     .. Executable Statements .. */
00109 
00110 /*     Quick exit if N = 0. */
00111 
00112     /* Parameter adjustments */
00113     --a;
00114     --afac;
00115     --ipiv;
00116     c_dim1 = *ldc;
00117     c_offset = 1 + c_dim1;
00118     c__ -= c_offset;
00119     --rwork;
00120 
00121     /* Function Body */
00122     if (*n <= 0) {
00123         *resid = 0.f;
00124         return 0;
00125     }
00126 
00127 /*     Determine EPS and the norm of A. */
00128 
00129     eps = slamch_("Epsilon");
00130     anorm = slansp_("1", uplo, n, &a[1], &rwork[1]);
00131 
00132 /*     Initialize C to the identity matrix. */
00133 
00134     slaset_("Full", n, n, &c_b5, &c_b6, &c__[c_offset], ldc);
00135 
00136 /*     Call SLAVSP to form the product D * U' (or D * L' ). */
00137 
00138     slavsp_(uplo, "Transpose", "Non-unit", n, n, &afac[1], &ipiv[1], &c__[
00139             c_offset], ldc, &info);
00140 
00141 /*     Call SLAVSP again to multiply by U ( or L ). */
00142 
00143     slavsp_(uplo, "No transpose", "Unit", n, n, &afac[1], &ipiv[1], &c__[
00144             c_offset], ldc, &info);
00145 
00146 /*     Compute the difference  C - A . */
00147 
00148     if (lsame_(uplo, "U")) {
00149         jc = 0;
00150         i__1 = *n;
00151         for (j = 1; j <= i__1; ++j) {
00152             i__2 = j;
00153             for (i__ = 1; i__ <= i__2; ++i__) {
00154                 c__[i__ + j * c_dim1] -= a[jc + i__];
00155 /* L10: */
00156             }
00157             jc += j;
00158 /* L20: */
00159         }
00160     } else {
00161         jc = 1;
00162         i__1 = *n;
00163         for (j = 1; j <= i__1; ++j) {
00164             i__2 = *n;
00165             for (i__ = j; i__ <= i__2; ++i__) {
00166                 c__[i__ + j * c_dim1] -= a[jc + i__ - j];
00167 /* L30: */
00168             }
00169             jc = jc + *n - j + 1;
00170 /* L40: */
00171         }
00172     }
00173 
00174 /*     Compute norm( C - A ) / ( N * norm(A) * EPS ) */
00175 
00176     *resid = slansy_("1", uplo, n, &c__[c_offset], ldc, &rwork[1]);
00177 
00178     if (anorm <= 0.f) {
00179         if (*resid != 0.f) {
00180             *resid = 1.f / eps;
00181         }
00182     } else {
00183         *resid = *resid / (real) (*n) / anorm / eps;
00184     }
00185 
00186     return 0;
00187 
00188 /*     End of SSPT01 */
00189 
00190 } /* sspt01_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:56:13