00001 /* ssbgv.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Subroutine */ int ssbgv_(char *jobz, char *uplo, integer *n, integer *ka, 00017 integer *kb, real *ab, integer *ldab, real *bb, integer *ldbb, real * 00018 w, real *z__, integer *ldz, real *work, integer *info) 00019 { 00020 /* System generated locals */ 00021 integer ab_dim1, ab_offset, bb_dim1, bb_offset, z_dim1, z_offset, i__1; 00022 00023 /* Local variables */ 00024 integer inde; 00025 char vect[1]; 00026 extern logical lsame_(char *, char *); 00027 integer iinfo; 00028 logical upper, wantz; 00029 extern /* Subroutine */ int xerbla_(char *, integer *); 00030 integer indwrk; 00031 extern /* Subroutine */ int spbstf_(char *, integer *, integer *, real *, 00032 integer *, integer *), ssbtrd_(char *, char *, integer *, 00033 integer *, real *, integer *, real *, real *, real *, integer *, 00034 real *, integer *), ssbgst_(char *, char *, 00035 integer *, integer *, integer *, real *, integer *, real *, 00036 integer *, real *, integer *, real *, integer *), 00037 ssterf_(integer *, real *, real *, integer *), ssteqr_(char *, 00038 integer *, real *, real *, real *, integer *, real *, integer *); 00039 00040 00041 /* -- LAPACK driver routine (version 3.2) -- */ 00042 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00043 /* November 2006 */ 00044 00045 /* .. Scalar Arguments .. */ 00046 /* .. */ 00047 /* .. Array Arguments .. */ 00048 /* .. */ 00049 00050 /* Purpose */ 00051 /* ======= */ 00052 00053 /* SSBGV computes all the eigenvalues, and optionally, the eigenvectors */ 00054 /* of a real generalized symmetric-definite banded eigenproblem, of */ 00055 /* the form A*x=(lambda)*B*x. Here A and B are assumed to be symmetric */ 00056 /* and banded, and B is also positive definite. */ 00057 00058 /* Arguments */ 00059 /* ========= */ 00060 00061 /* JOBZ (input) CHARACTER*1 */ 00062 /* = 'N': Compute eigenvalues only; */ 00063 /* = 'V': Compute eigenvalues and eigenvectors. */ 00064 00065 /* UPLO (input) CHARACTER*1 */ 00066 /* = 'U': Upper triangles of A and B are stored; */ 00067 /* = 'L': Lower triangles of A and B are stored. */ 00068 00069 /* N (input) INTEGER */ 00070 /* The order of the matrices A and B. N >= 0. */ 00071 00072 /* KA (input) INTEGER */ 00073 /* The number of superdiagonals of the matrix A if UPLO = 'U', */ 00074 /* or the number of subdiagonals if UPLO = 'L'. KA >= 0. */ 00075 00076 /* KB (input) INTEGER */ 00077 /* The number of superdiagonals of the matrix B if UPLO = 'U', */ 00078 /* or the number of subdiagonals if UPLO = 'L'. KB >= 0. */ 00079 00080 /* AB (input/output) REAL array, dimension (LDAB, N) */ 00081 /* On entry, the upper or lower triangle of the symmetric band */ 00082 /* matrix A, stored in the first ka+1 rows of the array. The */ 00083 /* j-th column of A is stored in the j-th column of the array AB */ 00084 /* as follows: */ 00085 /* if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j; */ 00086 /* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka). */ 00087 00088 /* On exit, the contents of AB are destroyed. */ 00089 00090 /* LDAB (input) INTEGER */ 00091 /* The leading dimension of the array AB. LDAB >= KA+1. */ 00092 00093 /* BB (input/output) REAL array, dimension (LDBB, N) */ 00094 /* On entry, the upper or lower triangle of the symmetric band */ 00095 /* matrix B, stored in the first kb+1 rows of the array. The */ 00096 /* j-th column of B is stored in the j-th column of the array BB */ 00097 /* as follows: */ 00098 /* if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j; */ 00099 /* if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb). */ 00100 00101 /* On exit, the factor S from the split Cholesky factorization */ 00102 /* B = S**T*S, as returned by SPBSTF. */ 00103 00104 /* LDBB (input) INTEGER */ 00105 /* The leading dimension of the array BB. LDBB >= KB+1. */ 00106 00107 /* W (output) REAL array, dimension (N) */ 00108 /* If INFO = 0, the eigenvalues in ascending order. */ 00109 00110 /* Z (output) REAL array, dimension (LDZ, N) */ 00111 /* If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of */ 00112 /* eigenvectors, with the i-th column of Z holding the */ 00113 /* eigenvector associated with W(i). The eigenvectors are */ 00114 /* normalized so that Z**T*B*Z = I. */ 00115 /* If JOBZ = 'N', then Z is not referenced. */ 00116 00117 /* LDZ (input) INTEGER */ 00118 /* The leading dimension of the array Z. LDZ >= 1, and if */ 00119 /* JOBZ = 'V', LDZ >= N. */ 00120 00121 /* WORK (workspace) REAL array, dimension (3*N) */ 00122 00123 /* INFO (output) INTEGER */ 00124 /* = 0: successful exit */ 00125 /* < 0: if INFO = -i, the i-th argument had an illegal value */ 00126 /* > 0: if INFO = i, and i is: */ 00127 /* <= N: the algorithm failed to converge: */ 00128 /* i off-diagonal elements of an intermediate */ 00129 /* tridiagonal form did not converge to zero; */ 00130 /* > N: if INFO = N + i, for 1 <= i <= N, then SPBSTF */ 00131 /* returned INFO = i: B is not positive definite. */ 00132 /* The factorization of B could not be completed and */ 00133 /* no eigenvalues or eigenvectors were computed. */ 00134 00135 /* ===================================================================== */ 00136 00137 /* .. Local Scalars .. */ 00138 /* .. */ 00139 /* .. External Functions .. */ 00140 /* .. */ 00141 /* .. External Subroutines .. */ 00142 /* .. */ 00143 /* .. Executable Statements .. */ 00144 00145 /* Test the input parameters. */ 00146 00147 /* Parameter adjustments */ 00148 ab_dim1 = *ldab; 00149 ab_offset = 1 + ab_dim1; 00150 ab -= ab_offset; 00151 bb_dim1 = *ldbb; 00152 bb_offset = 1 + bb_dim1; 00153 bb -= bb_offset; 00154 --w; 00155 z_dim1 = *ldz; 00156 z_offset = 1 + z_dim1; 00157 z__ -= z_offset; 00158 --work; 00159 00160 /* Function Body */ 00161 wantz = lsame_(jobz, "V"); 00162 upper = lsame_(uplo, "U"); 00163 00164 *info = 0; 00165 if (! (wantz || lsame_(jobz, "N"))) { 00166 *info = -1; 00167 } else if (! (upper || lsame_(uplo, "L"))) { 00168 *info = -2; 00169 } else if (*n < 0) { 00170 *info = -3; 00171 } else if (*ka < 0) { 00172 *info = -4; 00173 } else if (*kb < 0 || *kb > *ka) { 00174 *info = -5; 00175 } else if (*ldab < *ka + 1) { 00176 *info = -7; 00177 } else if (*ldbb < *kb + 1) { 00178 *info = -9; 00179 } else if (*ldz < 1 || wantz && *ldz < *n) { 00180 *info = -12; 00181 } 00182 if (*info != 0) { 00183 i__1 = -(*info); 00184 xerbla_("SSBGV ", &i__1); 00185 return 0; 00186 } 00187 00188 /* Quick return if possible */ 00189 00190 if (*n == 0) { 00191 return 0; 00192 } 00193 00194 /* Form a split Cholesky factorization of B. */ 00195 00196 spbstf_(uplo, n, kb, &bb[bb_offset], ldbb, info); 00197 if (*info != 0) { 00198 *info = *n + *info; 00199 return 0; 00200 } 00201 00202 /* Transform problem to standard eigenvalue problem. */ 00203 00204 inde = 1; 00205 indwrk = inde + *n; 00206 ssbgst_(jobz, uplo, n, ka, kb, &ab[ab_offset], ldab, &bb[bb_offset], ldbb, 00207 &z__[z_offset], ldz, &work[indwrk], &iinfo) 00208 ; 00209 00210 /* Reduce to tridiagonal form. */ 00211 00212 if (wantz) { 00213 *(unsigned char *)vect = 'U'; 00214 } else { 00215 *(unsigned char *)vect = 'N'; 00216 } 00217 ssbtrd_(vect, uplo, n, ka, &ab[ab_offset], ldab, &w[1], &work[inde], &z__[ 00218 z_offset], ldz, &work[indwrk], &iinfo); 00219 00220 /* For eigenvalues only, call SSTERF. For eigenvectors, call SSTEQR. */ 00221 00222 if (! wantz) { 00223 ssterf_(n, &w[1], &work[inde], info); 00224 } else { 00225 ssteqr_(jobz, n, &w[1], &work[inde], &z__[z_offset], ldz, &work[ 00226 indwrk], info); 00227 } 00228 return 0; 00229 00230 /* End of SSBGV */ 00231 00232 } /* ssbgv_ */