srqt03.c
Go to the documentation of this file.
00001 /* srqt03.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Common Block Declarations */
00017 
00018 struct {
00019     char srnamt[32];
00020 } srnamc_;
00021 
00022 #define srnamc_1 srnamc_
00023 
00024 /* Table of constant values */
00025 
00026 static real c_b4 = -1e10f;
00027 static integer c__2 = 2;
00028 static real c_b22 = -1.f;
00029 static real c_b23 = 1.f;
00030 
00031 /* Subroutine */ int srqt03_(integer *m, integer *n, integer *k, real *af, 
00032         real *c__, real *cc, real *q, integer *lda, real *tau, real *work, 
00033         integer *lwork, real *rwork, real *result)
00034 {
00035     /* Initialized data */
00036 
00037     static integer iseed[4] = { 1988,1989,1990,1991 };
00038 
00039     /* System generated locals */
00040     integer af_dim1, af_offset, c_dim1, c_offset, cc_dim1, cc_offset, q_dim1, 
00041             q_offset, i__1, i__2;
00042 
00043     /* Builtin functions */
00044     /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
00045 
00046     /* Local variables */
00047     integer j, mc, nc;
00048     real eps;
00049     char side[1];
00050     integer info, iside;
00051     extern logical lsame_(char *, char *);
00052     real resid;
00053     extern /* Subroutine */ int sgemm_(char *, char *, integer *, integer *, 
00054             integer *, real *, real *, integer *, real *, integer *, real *, 
00055             real *, integer *);
00056     integer minmn;
00057     real cnorm;
00058     char trans[1];
00059     extern doublereal slamch_(char *), slange_(char *, integer *, 
00060             integer *, real *, integer *, real *);
00061     extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *, 
00062             integer *, real *, integer *), slaset_(char *, integer *, 
00063             integer *, real *, real *, real *, integer *);
00064     integer itrans;
00065     extern /* Subroutine */ int slarnv_(integer *, integer *, integer *, real 
00066             *), sorgrq_(integer *, integer *, integer *, real *, integer *, 
00067             real *, real *, integer *, integer *), sormrq_(char *, char *, 
00068             integer *, integer *, integer *, real *, integer *, real *, real *
00069 , integer *, real *, integer *, integer *);
00070 
00071 
00072 /*  -- LAPACK test routine (version 3.1) -- */
00073 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00074 /*     November 2006 */
00075 
00076 /*     .. Scalar Arguments .. */
00077 /*     .. */
00078 /*     .. Array Arguments .. */
00079 /*     .. */
00080 
00081 /*  Purpose */
00082 /*  ======= */
00083 
00084 /*  SRQT03 tests SORMRQ, which computes Q*C, Q'*C, C*Q or C*Q'. */
00085 
00086 /*  SRQT03 compares the results of a call to SORMRQ with the results of */
00087 /*  forming Q explicitly by a call to SORGRQ and then performing matrix */
00088 /*  multiplication by a call to SGEMM. */
00089 
00090 /*  Arguments */
00091 /*  ========= */
00092 
00093 /*  M       (input) INTEGER */
00094 /*          The number of rows or columns of the matrix C; C is n-by-m if */
00095 /*          Q is applied from the left, or m-by-n if Q is applied from */
00096 /*          the right.  M >= 0. */
00097 
00098 /*  N       (input) INTEGER */
00099 /*          The order of the orthogonal matrix Q.  N >= 0. */
00100 
00101 /*  K       (input) INTEGER */
00102 /*          The number of elementary reflectors whose product defines the */
00103 /*          orthogonal matrix Q.  N >= K >= 0. */
00104 
00105 /*  AF      (input) REAL array, dimension (LDA,N) */
00106 /*          Details of the RQ factorization of an m-by-n matrix, as */
00107 /*          returned by SGERQF. See SGERQF for further details. */
00108 
00109 /*  C       (workspace) REAL array, dimension (LDA,N) */
00110 
00111 /*  CC      (workspace) REAL array, dimension (LDA,N) */
00112 
00113 /*  Q       (workspace) REAL array, dimension (LDA,N) */
00114 
00115 /*  LDA     (input) INTEGER */
00116 /*          The leading dimension of the arrays AF, C, CC, and Q. */
00117 
00118 /*  TAU     (input) REAL array, dimension (min(M,N)) */
00119 /*          The scalar factors of the elementary reflectors corresponding */
00120 /*          to the RQ factorization in AF. */
00121 
00122 /*  WORK    (workspace) REAL array, dimension (LWORK) */
00123 
00124 /*  LWORK   (input) INTEGER */
00125 /*          The length of WORK.  LWORK must be at least M, and should be */
00126 /*          M*NB, where NB is the blocksize for this environment. */
00127 
00128 /*  RWORK   (workspace) REAL array, dimension (M) */
00129 
00130 /*  RESULT  (output) REAL array, dimension (4) */
00131 /*          The test ratios compare two techniques for multiplying a */
00132 /*          random matrix C by an n-by-n orthogonal matrix Q. */
00133 /*          RESULT(1) = norm( Q*C - Q*C )  / ( N * norm(C) * EPS ) */
00134 /*          RESULT(2) = norm( C*Q - C*Q )  / ( N * norm(C) * EPS ) */
00135 /*          RESULT(3) = norm( Q'*C - Q'*C )/ ( N * norm(C) * EPS ) */
00136 /*          RESULT(4) = norm( C*Q' - C*Q' )/ ( N * norm(C) * EPS ) */
00137 
00138 /*  ===================================================================== */
00139 
00140 /*     .. Parameters .. */
00141 /*     .. */
00142 /*     .. Local Scalars .. */
00143 /*     .. */
00144 /*     .. External Functions .. */
00145 /*     .. */
00146 /*     .. External Subroutines .. */
00147 /*     .. */
00148 /*     .. Local Arrays .. */
00149 /*     .. */
00150 /*     .. Intrinsic Functions .. */
00151 /*     .. */
00152 /*     .. Scalars in Common .. */
00153 /*     .. */
00154 /*     .. Common blocks .. */
00155 /*     .. */
00156 /*     .. Data statements .. */
00157     /* Parameter adjustments */
00158     q_dim1 = *lda;
00159     q_offset = 1 + q_dim1;
00160     q -= q_offset;
00161     cc_dim1 = *lda;
00162     cc_offset = 1 + cc_dim1;
00163     cc -= cc_offset;
00164     c_dim1 = *lda;
00165     c_offset = 1 + c_dim1;
00166     c__ -= c_offset;
00167     af_dim1 = *lda;
00168     af_offset = 1 + af_dim1;
00169     af -= af_offset;
00170     --tau;
00171     --work;
00172     --rwork;
00173     --result;
00174 
00175     /* Function Body */
00176 /*     .. */
00177 /*     .. Executable Statements .. */
00178 
00179     eps = slamch_("Epsilon");
00180     minmn = min(*m,*n);
00181 
00182 /*     Quick return if possible */
00183 
00184     if (minmn == 0) {
00185         result[1] = 0.f;
00186         result[2] = 0.f;
00187         result[3] = 0.f;
00188         result[4] = 0.f;
00189         return 0;
00190     }
00191 
00192 /*     Copy the last k rows of the factorization to the array Q */
00193 
00194     slaset_("Full", n, n, &c_b4, &c_b4, &q[q_offset], lda);
00195     if (*k > 0 && *n > *k) {
00196         i__1 = *n - *k;
00197         slacpy_("Full", k, &i__1, &af[*m - *k + 1 + af_dim1], lda, &q[*n - *k 
00198                 + 1 + q_dim1], lda);
00199     }
00200     if (*k > 1) {
00201         i__1 = *k - 1;
00202         i__2 = *k - 1;
00203         slacpy_("Lower", &i__1, &i__2, &af[*m - *k + 2 + (*n - *k + 1) * 
00204                 af_dim1], lda, &q[*n - *k + 2 + (*n - *k + 1) * q_dim1], lda);
00205     }
00206 
00207 /*     Generate the n-by-n matrix Q */
00208 
00209     s_copy(srnamc_1.srnamt, "SORGRQ", (ftnlen)32, (ftnlen)6);
00210     sorgrq_(n, n, k, &q[q_offset], lda, &tau[minmn - *k + 1], &work[1], lwork, 
00211              &info);
00212 
00213     for (iside = 1; iside <= 2; ++iside) {
00214         if (iside == 1) {
00215             *(unsigned char *)side = 'L';
00216             mc = *n;
00217             nc = *m;
00218         } else {
00219             *(unsigned char *)side = 'R';
00220             mc = *m;
00221             nc = *n;
00222         }
00223 
00224 /*        Generate MC by NC matrix C */
00225 
00226         i__1 = nc;
00227         for (j = 1; j <= i__1; ++j) {
00228             slarnv_(&c__2, iseed, &mc, &c__[j * c_dim1 + 1]);
00229 /* L10: */
00230         }
00231         cnorm = slange_("1", &mc, &nc, &c__[c_offset], lda, &rwork[1]);
00232         if (cnorm == 0.f) {
00233             cnorm = 1.f;
00234         }
00235 
00236         for (itrans = 1; itrans <= 2; ++itrans) {
00237             if (itrans == 1) {
00238                 *(unsigned char *)trans = 'N';
00239             } else {
00240                 *(unsigned char *)trans = 'T';
00241             }
00242 
00243 /*           Copy C */
00244 
00245             slacpy_("Full", &mc, &nc, &c__[c_offset], lda, &cc[cc_offset], 
00246                     lda);
00247 
00248 /*           Apply Q or Q' to C */
00249 
00250             s_copy(srnamc_1.srnamt, "SORMRQ", (ftnlen)32, (ftnlen)6);
00251             if (*k > 0) {
00252                 sormrq_(side, trans, &mc, &nc, k, &af[*m - *k + 1 + af_dim1], 
00253                         lda, &tau[minmn - *k + 1], &cc[cc_offset], lda, &work[
00254                         1], lwork, &info);
00255             }
00256 
00257 /*           Form explicit product and subtract */
00258 
00259             if (lsame_(side, "L")) {
00260                 sgemm_(trans, "No transpose", &mc, &nc, &mc, &c_b22, &q[
00261                         q_offset], lda, &c__[c_offset], lda, &c_b23, &cc[
00262                         cc_offset], lda);
00263             } else {
00264                 sgemm_("No transpose", trans, &mc, &nc, &nc, &c_b22, &c__[
00265                         c_offset], lda, &q[q_offset], lda, &c_b23, &cc[
00266                         cc_offset], lda);
00267             }
00268 
00269 /*           Compute error in the difference */
00270 
00271             resid = slange_("1", &mc, &nc, &cc[cc_offset], lda, &rwork[1]);
00272             result[(iside - 1 << 1) + itrans] = resid / ((real) max(1,*n) * 
00273                     cnorm * eps);
00274 
00275 /* L20: */
00276         }
00277 /* L30: */
00278     }
00279 
00280     return 0;
00281 
00282 /*     End of SRQT03 */
00283 
00284 } /* srqt03_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:56:13