00001 /* sqrt16.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static real c_b8 = -1.f; 00019 static real c_b9 = 1.f; 00020 static integer c__1 = 1; 00021 00022 /* Subroutine */ int sqrt16_(char *trans, integer *m, integer *n, integer * 00023 nrhs, real *a, integer *lda, real *x, integer *ldx, real *b, integer * 00024 ldb, real *rwork, real *resid) 00025 { 00026 /* System generated locals */ 00027 integer a_dim1, a_offset, b_dim1, b_offset, x_dim1, x_offset, i__1; 00028 real r__1, r__2; 00029 00030 /* Local variables */ 00031 integer j, n1, n2; 00032 real eps; 00033 extern logical lsame_(char *, char *); 00034 extern /* Subroutine */ int sgemm_(char *, char *, integer *, integer *, 00035 integer *, real *, real *, integer *, real *, integer *, real *, 00036 real *, integer *); 00037 real anorm, bnorm; 00038 extern doublereal sasum_(integer *, real *, integer *); 00039 real xnorm; 00040 extern doublereal slamch_(char *), slange_(char *, integer *, 00041 integer *, real *, integer *, real *); 00042 00043 00044 /* -- LAPACK test routine (version 3.1) -- */ 00045 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00046 /* November 2006 */ 00047 00048 /* .. Scalar Arguments .. */ 00049 /* .. */ 00050 /* .. Array Arguments .. */ 00051 /* .. */ 00052 00053 /* Purpose */ 00054 /* ======= */ 00055 00056 /* SQRT16 computes the residual for a solution of a system of linear */ 00057 /* equations A*x = b or A'*x = b: */ 00058 /* RESID = norm(B - A*X) / ( max(m,n) * norm(A) * norm(X) * EPS ), */ 00059 /* where EPS is the machine epsilon. */ 00060 00061 /* Arguments */ 00062 /* ========= */ 00063 00064 /* TRANS (input) CHARACTER*1 */ 00065 /* Specifies the form of the system of equations: */ 00066 /* = 'N': A *x = b */ 00067 /* = 'T': A'*x = b, where A' is the transpose of A */ 00068 /* = 'C': A'*x = b, where A' is the transpose of A */ 00069 00070 /* M (input) INTEGER */ 00071 /* The number of rows of the matrix A. M >= 0. */ 00072 00073 /* N (input) INTEGER */ 00074 /* The number of columns of the matrix A. N >= 0. */ 00075 00076 /* NRHS (input) INTEGER */ 00077 /* The number of columns of B, the matrix of right hand sides. */ 00078 /* NRHS >= 0. */ 00079 00080 /* A (input) REAL array, dimension (LDA,N) */ 00081 /* The original M x N matrix A. */ 00082 00083 /* LDA (input) INTEGER */ 00084 /* The leading dimension of the array A. LDA >= max(1,M). */ 00085 00086 /* X (input) REAL array, dimension (LDX,NRHS) */ 00087 /* The computed solution vectors for the system of linear */ 00088 /* equations. */ 00089 00090 /* LDX (input) INTEGER */ 00091 /* The leading dimension of the array X. If TRANS = 'N', */ 00092 /* LDX >= max(1,N); if TRANS = 'T' or 'C', LDX >= max(1,M). */ 00093 00094 /* B (input/output) REAL array, dimension (LDB,NRHS) */ 00095 /* On entry, the right hand side vectors for the system of */ 00096 /* linear equations. */ 00097 /* On exit, B is overwritten with the difference B - A*X. */ 00098 00099 /* LDB (input) INTEGER */ 00100 /* The leading dimension of the array B. IF TRANS = 'N', */ 00101 /* LDB >= max(1,M); if TRANS = 'T' or 'C', LDB >= max(1,N). */ 00102 00103 /* RWORK (workspace) REAL array, dimension (M) */ 00104 00105 /* RESID (output) REAL */ 00106 /* The maximum over the number of right hand sides of */ 00107 /* norm(B - A*X) / ( max(m,n) * norm(A) * norm(X) * EPS ). */ 00108 00109 /* ===================================================================== */ 00110 00111 /* .. Parameters .. */ 00112 /* .. */ 00113 /* .. Local Scalars .. */ 00114 /* .. */ 00115 /* .. External Functions .. */ 00116 /* .. */ 00117 /* .. External Subroutines .. */ 00118 /* .. */ 00119 /* .. Intrinsic Functions .. */ 00120 /* .. */ 00121 /* .. Executable Statements .. */ 00122 00123 /* Quick exit if M = 0 or N = 0 or NRHS = 0 */ 00124 00125 /* Parameter adjustments */ 00126 a_dim1 = *lda; 00127 a_offset = 1 + a_dim1; 00128 a -= a_offset; 00129 x_dim1 = *ldx; 00130 x_offset = 1 + x_dim1; 00131 x -= x_offset; 00132 b_dim1 = *ldb; 00133 b_offset = 1 + b_dim1; 00134 b -= b_offset; 00135 --rwork; 00136 00137 /* Function Body */ 00138 if (*m <= 0 || *n <= 0 || *nrhs == 0) { 00139 *resid = 0.f; 00140 return 0; 00141 } 00142 00143 if (lsame_(trans, "T") || lsame_(trans, "C")) { 00144 anorm = slange_("I", m, n, &a[a_offset], lda, &rwork[1]); 00145 n1 = *n; 00146 n2 = *m; 00147 } else { 00148 anorm = slange_("1", m, n, &a[a_offset], lda, &rwork[1]); 00149 n1 = *m; 00150 n2 = *n; 00151 } 00152 00153 eps = slamch_("Epsilon"); 00154 00155 /* Compute B - A*X (or B - A'*X ) and store in B. */ 00156 00157 sgemm_(trans, "No transpose", &n1, nrhs, &n2, &c_b8, &a[a_offset], lda, & 00158 x[x_offset], ldx, &c_b9, &b[b_offset], ldb) 00159 ; 00160 00161 /* Compute the maximum over the number of right hand sides of */ 00162 /* norm(B - A*X) / ( max(m,n) * norm(A) * norm(X) * EPS ) . */ 00163 00164 *resid = 0.f; 00165 i__1 = *nrhs; 00166 for (j = 1; j <= i__1; ++j) { 00167 bnorm = sasum_(&n1, &b[j * b_dim1 + 1], &c__1); 00168 xnorm = sasum_(&n2, &x[j * x_dim1 + 1], &c__1); 00169 if (anorm == 0.f && bnorm == 0.f) { 00170 *resid = 0.f; 00171 } else if (anorm <= 0.f || xnorm <= 0.f) { 00172 *resid = 1.f / eps; 00173 } else { 00174 /* Computing MAX */ 00175 r__1 = *resid, r__2 = bnorm / anorm / xnorm / (max(*m,*n) * eps); 00176 *resid = dmax(r__1,r__2); 00177 } 00178 /* L10: */ 00179 } 00180 00181 return 0; 00182 00183 /* End of SQRT16 */ 00184 00185 } /* sqrt16_ */