sptt02.c
Go to the documentation of this file.
00001 /* sptt02.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Table of constant values */
00017 
00018 static real c_b4 = -1.f;
00019 static real c_b5 = 1.f;
00020 static integer c__1 = 1;
00021 
00022 /* Subroutine */ int sptt02_(integer *n, integer *nrhs, real *d__, real *e, 
00023         real *x, integer *ldx, real *b, integer *ldb, real *resid)
00024 {
00025     /* System generated locals */
00026     integer b_dim1, b_offset, x_dim1, x_offset, i__1;
00027     real r__1, r__2;
00028 
00029     /* Local variables */
00030     integer j;
00031     real eps, anorm, bnorm;
00032     extern doublereal sasum_(integer *, real *, integer *);
00033     real xnorm;
00034     extern doublereal slamch_(char *);
00035     extern /* Subroutine */ int slaptm_(integer *, integer *, real *, real *, 
00036             real *, real *, integer *, real *, real *, integer *);
00037     extern doublereal slanst_(char *, integer *, real *, real *);
00038 
00039 
00040 /*  -- LAPACK test routine (version 3.1) -- */
00041 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00042 /*     November 2006 */
00043 
00044 /*     .. Scalar Arguments .. */
00045 /*     .. */
00046 /*     .. Array Arguments .. */
00047 /*     .. */
00048 
00049 /*  Purpose */
00050 /*  ======= */
00051 
00052 /*  SPTT02 computes the residual for the solution to a symmetric */
00053 /*  tridiagonal system of equations: */
00054 /*     RESID = norm(B - A*X) / (norm(A) * norm(X) * EPS), */
00055 /*  where EPS is the machine epsilon. */
00056 
00057 /*  Arguments */
00058 /*  ========= */
00059 
00060 /*  N       (input) INTEGTER */
00061 /*          The order of the matrix A. */
00062 
00063 /*  NRHS    (input) INTEGER */
00064 /*          The number of right hand sides, i.e., the number of columns */
00065 /*          of the matrices B and X.  NRHS >= 0. */
00066 
00067 /*  D       (input) REAL array, dimension (N) */
00068 /*          The n diagonal elements of the tridiagonal matrix A. */
00069 
00070 /*  E       (input) REAL array, dimension (N-1) */
00071 /*          The (n-1) subdiagonal elements of the tridiagonal matrix A. */
00072 
00073 /*  X       (input) REAL array, dimension (LDX,NRHS) */
00074 /*          The n by nrhs matrix of solution vectors X. */
00075 
00076 /*  LDX     (input) INTEGER */
00077 /*          The leading dimension of the array X.  LDX >= max(1,N). */
00078 
00079 /*  B       (input/output) REAL array, dimension (LDB,NRHS) */
00080 /*          On entry, the n by nrhs matrix of right hand side vectors B. */
00081 /*          On exit, B is overwritten with the difference B - A*X. */
00082 
00083 /*  LDB     (input) INTEGER */
00084 /*          The leading dimension of the array B.  LDB >= max(1,N). */
00085 
00086 /*  RESID   (output) REAL */
00087 /*          norm(B - A*X) / (norm(A) * norm(X) * EPS) */
00088 
00089 /*  ===================================================================== */
00090 
00091 /*     .. Parameters .. */
00092 /*     .. */
00093 /*     .. Local Scalars .. */
00094 /*     .. */
00095 /*     .. External Functions .. */
00096 /*     .. */
00097 /*     .. Intrinsic Functions .. */
00098 /*     .. */
00099 /*     .. External Subroutines .. */
00100 /*     .. */
00101 /*     .. Executable Statements .. */
00102 
00103 /*     Quick return if possible */
00104 
00105     /* Parameter adjustments */
00106     --d__;
00107     --e;
00108     x_dim1 = *ldx;
00109     x_offset = 1 + x_dim1;
00110     x -= x_offset;
00111     b_dim1 = *ldb;
00112     b_offset = 1 + b_dim1;
00113     b -= b_offset;
00114 
00115     /* Function Body */
00116     if (*n <= 0) {
00117         *resid = 0.f;
00118         return 0;
00119     }
00120 
00121 /*     Compute the 1-norm of the tridiagonal matrix A. */
00122 
00123     anorm = slanst_("1", n, &d__[1], &e[1]);
00124 
00125 /*     Exit with RESID = 1/EPS if ANORM = 0. */
00126 
00127     eps = slamch_("Epsilon");
00128     if (anorm <= 0.f) {
00129         *resid = 1.f / eps;
00130         return 0;
00131     }
00132 
00133 /*     Compute B - A*X. */
00134 
00135     slaptm_(n, nrhs, &c_b4, &d__[1], &e[1], &x[x_offset], ldx, &c_b5, &b[
00136             b_offset], ldb);
00137 
00138 /*     Compute the maximum over the number of right hand sides of */
00139 /*        norm(B - A*X) / ( norm(A) * norm(X) * EPS ). */
00140 
00141     *resid = 0.f;
00142     i__1 = *nrhs;
00143     for (j = 1; j <= i__1; ++j) {
00144         bnorm = sasum_(n, &b[j * b_dim1 + 1], &c__1);
00145         xnorm = sasum_(n, &x[j * x_dim1 + 1], &c__1);
00146         if (xnorm <= 0.f) {
00147             *resid = 1.f / eps;
00148         } else {
00149 /* Computing MAX */
00150             r__1 = *resid, r__2 = bnorm / anorm / xnorm / eps;
00151             *resid = dmax(r__1,r__2);
00152         }
00153 /* L10: */
00154     }
00155 
00156     return 0;
00157 
00158 /*     End of SPTT02 */
00159 
00160 } /* sptt02_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:56:13