00001 /* sptcon.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static integer c__1 = 1; 00019 00020 /* Subroutine */ int sptcon_(integer *n, real *d__, real *e, real *anorm, 00021 real *rcond, real *work, integer *info) 00022 { 00023 /* System generated locals */ 00024 integer i__1; 00025 real r__1; 00026 00027 /* Local variables */ 00028 integer i__, ix; 00029 extern /* Subroutine */ int xerbla_(char *, integer *); 00030 extern integer isamax_(integer *, real *, integer *); 00031 real ainvnm; 00032 00033 00034 /* -- LAPACK routine (version 3.2) -- */ 00035 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00036 /* November 2006 */ 00037 00038 /* .. Scalar Arguments .. */ 00039 /* .. */ 00040 /* .. Array Arguments .. */ 00041 /* .. */ 00042 00043 /* Purpose */ 00044 /* ======= */ 00045 00046 /* SPTCON computes the reciprocal of the condition number (in the */ 00047 /* 1-norm) of a real symmetric positive definite tridiagonal matrix */ 00048 /* using the factorization A = L*D*L**T or A = U**T*D*U computed by */ 00049 /* SPTTRF. */ 00050 00051 /* Norm(inv(A)) is computed by a direct method, and the reciprocal of */ 00052 /* the condition number is computed as */ 00053 /* RCOND = 1 / (ANORM * norm(inv(A))). */ 00054 00055 /* Arguments */ 00056 /* ========= */ 00057 00058 /* N (input) INTEGER */ 00059 /* The order of the matrix A. N >= 0. */ 00060 00061 /* D (input) REAL array, dimension (N) */ 00062 /* The n diagonal elements of the diagonal matrix D from the */ 00063 /* factorization of A, as computed by SPTTRF. */ 00064 00065 /* E (input) REAL array, dimension (N-1) */ 00066 /* The (n-1) off-diagonal elements of the unit bidiagonal factor */ 00067 /* U or L from the factorization of A, as computed by SPTTRF. */ 00068 00069 /* ANORM (input) REAL */ 00070 /* The 1-norm of the original matrix A. */ 00071 00072 /* RCOND (output) REAL */ 00073 /* The reciprocal of the condition number of the matrix A, */ 00074 /* computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is the */ 00075 /* 1-norm of inv(A) computed in this routine. */ 00076 00077 /* WORK (workspace) REAL array, dimension (N) */ 00078 00079 /* INFO (output) INTEGER */ 00080 /* = 0: successful exit */ 00081 /* < 0: if INFO = -i, the i-th argument had an illegal value */ 00082 00083 /* Further Details */ 00084 /* =============== */ 00085 00086 /* The method used is described in Nicholas J. Higham, "Efficient */ 00087 /* Algorithms for Computing the Condition Number of a Tridiagonal */ 00088 /* Matrix", SIAM J. Sci. Stat. Comput., Vol. 7, No. 1, January 1986. */ 00089 00090 /* ===================================================================== */ 00091 00092 /* .. Parameters .. */ 00093 /* .. */ 00094 /* .. Local Scalars .. */ 00095 /* .. */ 00096 /* .. External Functions .. */ 00097 /* .. */ 00098 /* .. External Subroutines .. */ 00099 /* .. */ 00100 /* .. Intrinsic Functions .. */ 00101 /* .. */ 00102 /* .. Executable Statements .. */ 00103 00104 /* Test the input arguments. */ 00105 00106 /* Parameter adjustments */ 00107 --work; 00108 --e; 00109 --d__; 00110 00111 /* Function Body */ 00112 *info = 0; 00113 if (*n < 0) { 00114 *info = -1; 00115 } else if (*anorm < 0.f) { 00116 *info = -4; 00117 } 00118 if (*info != 0) { 00119 i__1 = -(*info); 00120 xerbla_("SPTCON", &i__1); 00121 return 0; 00122 } 00123 00124 /* Quick return if possible */ 00125 00126 *rcond = 0.f; 00127 if (*n == 0) { 00128 *rcond = 1.f; 00129 return 0; 00130 } else if (*anorm == 0.f) { 00131 return 0; 00132 } 00133 00134 /* Check that D(1:N) is positive. */ 00135 00136 i__1 = *n; 00137 for (i__ = 1; i__ <= i__1; ++i__) { 00138 if (d__[i__] <= 0.f) { 00139 return 0; 00140 } 00141 /* L10: */ 00142 } 00143 00144 /* Solve M(A) * x = e, where M(A) = (m(i,j)) is given by */ 00145 00146 /* m(i,j) = abs(A(i,j)), i = j, */ 00147 /* m(i,j) = -abs(A(i,j)), i .ne. j, */ 00148 00149 /* and e = [ 1, 1, ..., 1 ]'. Note M(A) = M(L)*D*M(L)'. */ 00150 00151 /* Solve M(L) * x = e. */ 00152 00153 work[1] = 1.f; 00154 i__1 = *n; 00155 for (i__ = 2; i__ <= i__1; ++i__) { 00156 work[i__] = work[i__ - 1] * (r__1 = e[i__ - 1], dabs(r__1)) + 1.f; 00157 /* L20: */ 00158 } 00159 00160 /* Solve D * M(L)' * x = b. */ 00161 00162 work[*n] /= d__[*n]; 00163 for (i__ = *n - 1; i__ >= 1; --i__) { 00164 work[i__] = work[i__] / d__[i__] + work[i__ + 1] * (r__1 = e[i__], 00165 dabs(r__1)); 00166 /* L30: */ 00167 } 00168 00169 /* Compute AINVNM = max(x(i)), 1<=i<=n. */ 00170 00171 ix = isamax_(n, &work[1], &c__1); 00172 ainvnm = (r__1 = work[ix], dabs(r__1)); 00173 00174 /* Compute the reciprocal condition number. */ 00175 00176 if (ainvnm != 0.f) { 00177 *rcond = 1.f / ainvnm / *anorm; 00178 } 00179 00180 return 0; 00181 00182 /* End of SPTCON */ 00183 00184 } /* sptcon_ */