spotrf.c
Go to the documentation of this file.
00001 /* spotrf.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Table of constant values */
00017 
00018 static integer c__1 = 1;
00019 static integer c_n1 = -1;
00020 static real c_b13 = -1.f;
00021 static real c_b14 = 1.f;
00022 
00023 /* Subroutine */ int spotrf_(char *uplo, integer *n, real *a, integer *lda, 
00024         integer *info)
00025 {
00026     /* System generated locals */
00027     integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
00028 
00029     /* Local variables */
00030     integer j, jb, nb;
00031     extern logical lsame_(char *, char *);
00032     extern /* Subroutine */ int sgemm_(char *, char *, integer *, integer *, 
00033             integer *, real *, real *, integer *, real *, integer *, real *, 
00034             real *, integer *);
00035     logical upper;
00036     extern /* Subroutine */ int strsm_(char *, char *, char *, char *, 
00037             integer *, integer *, real *, real *, integer *, real *, integer *
00038 ), ssyrk_(char *, char *, integer 
00039             *, integer *, real *, real *, integer *, real *, real *, integer *
00040 ), spotf2_(char *, integer *, real *, integer *, 
00041             integer *), xerbla_(char *, integer *);
00042     extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
00043             integer *, integer *);
00044 
00045 
00046 /*  -- LAPACK routine (version 3.2) -- */
00047 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00048 /*     November 2006 */
00049 
00050 /*     .. Scalar Arguments .. */
00051 /*     .. */
00052 /*     .. Array Arguments .. */
00053 /*     .. */
00054 
00055 /*  Purpose */
00056 /*  ======= */
00057 
00058 /*  SPOTRF computes the Cholesky factorization of a real symmetric */
00059 /*  positive definite matrix A. */
00060 
00061 /*  The factorization has the form */
00062 /*     A = U**T * U,  if UPLO = 'U', or */
00063 /*     A = L  * L**T,  if UPLO = 'L', */
00064 /*  where U is an upper triangular matrix and L is lower triangular. */
00065 
00066 /*  This is the block version of the algorithm, calling Level 3 BLAS. */
00067 
00068 /*  Arguments */
00069 /*  ========= */
00070 
00071 /*  UPLO    (input) CHARACTER*1 */
00072 /*          = 'U':  Upper triangle of A is stored; */
00073 /*          = 'L':  Lower triangle of A is stored. */
00074 
00075 /*  N       (input) INTEGER */
00076 /*          The order of the matrix A.  N >= 0. */
00077 
00078 /*  A       (input/output) REAL array, dimension (LDA,N) */
00079 /*          On entry, the symmetric matrix A.  If UPLO = 'U', the leading */
00080 /*          N-by-N upper triangular part of A contains the upper */
00081 /*          triangular part of the matrix A, and the strictly lower */
00082 /*          triangular part of A is not referenced.  If UPLO = 'L', the */
00083 /*          leading N-by-N lower triangular part of A contains the lower */
00084 /*          triangular part of the matrix A, and the strictly upper */
00085 /*          triangular part of A is not referenced. */
00086 
00087 /*          On exit, if INFO = 0, the factor U or L from the Cholesky */
00088 /*          factorization A = U**T*U or A = L*L**T. */
00089 
00090 /*  LDA     (input) INTEGER */
00091 /*          The leading dimension of the array A.  LDA >= max(1,N). */
00092 
00093 /*  INFO    (output) INTEGER */
00094 /*          = 0:  successful exit */
00095 /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
00096 /*          > 0:  if INFO = i, the leading minor of order i is not */
00097 /*                positive definite, and the factorization could not be */
00098 /*                completed. */
00099 
00100 /*  ===================================================================== */
00101 
00102 /*     .. Parameters .. */
00103 /*     .. */
00104 /*     .. Local Scalars .. */
00105 /*     .. */
00106 /*     .. External Functions .. */
00107 /*     .. */
00108 /*     .. External Subroutines .. */
00109 /*     .. */
00110 /*     .. Intrinsic Functions .. */
00111 /*     .. */
00112 /*     .. Executable Statements .. */
00113 
00114 /*     Test the input parameters. */
00115 
00116     /* Parameter adjustments */
00117     a_dim1 = *lda;
00118     a_offset = 1 + a_dim1;
00119     a -= a_offset;
00120 
00121     /* Function Body */
00122     *info = 0;
00123     upper = lsame_(uplo, "U");
00124     if (! upper && ! lsame_(uplo, "L")) {
00125         *info = -1;
00126     } else if (*n < 0) {
00127         *info = -2;
00128     } else if (*lda < max(1,*n)) {
00129         *info = -4;
00130     }
00131     if (*info != 0) {
00132         i__1 = -(*info);
00133         xerbla_("SPOTRF", &i__1);
00134         return 0;
00135     }
00136 
00137 /*     Quick return if possible */
00138 
00139     if (*n == 0) {
00140         return 0;
00141     }
00142 
00143 /*     Determine the block size for this environment. */
00144 
00145     nb = ilaenv_(&c__1, "SPOTRF", uplo, n, &c_n1, &c_n1, &c_n1);
00146     if (nb <= 1 || nb >= *n) {
00147 
00148 /*        Use unblocked code. */
00149 
00150         spotf2_(uplo, n, &a[a_offset], lda, info);
00151     } else {
00152 
00153 /*        Use blocked code. */
00154 
00155         if (upper) {
00156 
00157 /*           Compute the Cholesky factorization A = U'*U. */
00158 
00159             i__1 = *n;
00160             i__2 = nb;
00161             for (j = 1; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
00162 
00163 /*              Update and factorize the current diagonal block and test */
00164 /*              for non-positive-definiteness. */
00165 
00166 /* Computing MIN */
00167                 i__3 = nb, i__4 = *n - j + 1;
00168                 jb = min(i__3,i__4);
00169                 i__3 = j - 1;
00170                 ssyrk_("Upper", "Transpose", &jb, &i__3, &c_b13, &a[j * 
00171                         a_dim1 + 1], lda, &c_b14, &a[j + j * a_dim1], lda);
00172                 spotf2_("Upper", &jb, &a[j + j * a_dim1], lda, info);
00173                 if (*info != 0) {
00174                     goto L30;
00175                 }
00176                 if (j + jb <= *n) {
00177 
00178 /*                 Compute the current block row. */
00179 
00180                     i__3 = *n - j - jb + 1;
00181                     i__4 = j - 1;
00182                     sgemm_("Transpose", "No transpose", &jb, &i__3, &i__4, &
00183                             c_b13, &a[j * a_dim1 + 1], lda, &a[(j + jb) * 
00184                             a_dim1 + 1], lda, &c_b14, &a[j + (j + jb) * 
00185                             a_dim1], lda);
00186                     i__3 = *n - j - jb + 1;
00187                     strsm_("Left", "Upper", "Transpose", "Non-unit", &jb, &
00188                             i__3, &c_b14, &a[j + j * a_dim1], lda, &a[j + (j 
00189                             + jb) * a_dim1], lda);
00190                 }
00191 /* L10: */
00192             }
00193 
00194         } else {
00195 
00196 /*           Compute the Cholesky factorization A = L*L'. */
00197 
00198             i__2 = *n;
00199             i__1 = nb;
00200             for (j = 1; i__1 < 0 ? j >= i__2 : j <= i__2; j += i__1) {
00201 
00202 /*              Update and factorize the current diagonal block and test */
00203 /*              for non-positive-definiteness. */
00204 
00205 /* Computing MIN */
00206                 i__3 = nb, i__4 = *n - j + 1;
00207                 jb = min(i__3,i__4);
00208                 i__3 = j - 1;
00209                 ssyrk_("Lower", "No transpose", &jb, &i__3, &c_b13, &a[j + 
00210                         a_dim1], lda, &c_b14, &a[j + j * a_dim1], lda);
00211                 spotf2_("Lower", &jb, &a[j + j * a_dim1], lda, info);
00212                 if (*info != 0) {
00213                     goto L30;
00214                 }
00215                 if (j + jb <= *n) {
00216 
00217 /*                 Compute the current block column. */
00218 
00219                     i__3 = *n - j - jb + 1;
00220                     i__4 = j - 1;
00221                     sgemm_("No transpose", "Transpose", &i__3, &jb, &i__4, &
00222                             c_b13, &a[j + jb + a_dim1], lda, &a[j + a_dim1], 
00223                             lda, &c_b14, &a[j + jb + j * a_dim1], lda);
00224                     i__3 = *n - j - jb + 1;
00225                     strsm_("Right", "Lower", "Transpose", "Non-unit", &i__3, &
00226                             jb, &c_b14, &a[j + j * a_dim1], lda, &a[j + jb + 
00227                             j * a_dim1], lda);
00228                 }
00229 /* L20: */
00230             }
00231         }
00232     }
00233     goto L40;
00234 
00235 L30:
00236     *info = *info + j - 1;
00237 
00238 L40:
00239     return 0;
00240 
00241 /*     End of SPOTRF */
00242 
00243 } /* spotrf_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:56:13