00001 /* spot05.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static integer c__1 = 1; 00019 00020 /* Subroutine */ int spot05_(char *uplo, integer *n, integer *nrhs, real *a, 00021 integer *lda, real *b, integer *ldb, real *x, integer *ldx, real * 00022 xact, integer *ldxact, real *ferr, real *berr, real *reslts) 00023 { 00024 /* System generated locals */ 00025 integer a_dim1, a_offset, b_dim1, b_offset, x_dim1, x_offset, xact_dim1, 00026 xact_offset, i__1, i__2, i__3; 00027 real r__1, r__2, r__3; 00028 00029 /* Local variables */ 00030 integer i__, j, k; 00031 real eps, tmp, diff, axbi; 00032 integer imax; 00033 real unfl, ovfl; 00034 extern logical lsame_(char *, char *); 00035 logical upper; 00036 real xnorm; 00037 extern doublereal slamch_(char *); 00038 real errbnd; 00039 extern integer isamax_(integer *, real *, integer *); 00040 00041 00042 /* -- LAPACK test routine (version 3.1) -- */ 00043 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00044 /* November 2006 */ 00045 00046 /* .. Scalar Arguments .. */ 00047 /* .. */ 00048 /* .. Array Arguments .. */ 00049 /* .. */ 00050 00051 /* Purpose */ 00052 /* ======= */ 00053 00054 /* SPOT05 tests the error bounds from iterative refinement for the */ 00055 /* computed solution to a system of equations A*X = B, where A is a */ 00056 /* symmetric n by n matrix. */ 00057 00058 /* RESLTS(1) = test of the error bound */ 00059 /* = norm(X - XACT) / ( norm(X) * FERR ) */ 00060 00061 /* A large value is returned if this ratio is not less than one. */ 00062 00063 /* RESLTS(2) = residual from the iterative refinement routine */ 00064 /* = the maximum of BERR / ( (n+1)*EPS + (*) ), where */ 00065 /* (*) = (n+1)*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i ) */ 00066 00067 /* Arguments */ 00068 /* ========= */ 00069 00070 /* UPLO (input) CHARACTER*1 */ 00071 /* Specifies whether the upper or lower triangular part of the */ 00072 /* symmetric matrix A is stored. */ 00073 /* = 'U': Upper triangular */ 00074 /* = 'L': Lower triangular */ 00075 00076 /* N (input) INTEGER */ 00077 /* The number of rows of the matrices X, B, and XACT, and the */ 00078 /* order of the matrix A. N >= 0. */ 00079 00080 /* NRHS (input) INTEGER */ 00081 /* The number of columns of the matrices X, B, and XACT. */ 00082 /* NRHS >= 0. */ 00083 00084 /* A (input) REAL array, dimension (LDA,N) */ 00085 /* The symmetric matrix A. If UPLO = 'U', the leading n by n */ 00086 /* upper triangular part of A contains the upper triangular part */ 00087 /* of the matrix A, and the strictly lower triangular part of A */ 00088 /* is not referenced. If UPLO = 'L', the leading n by n lower */ 00089 /* triangular part of A contains the lower triangular part of */ 00090 /* the matrix A, and the strictly upper triangular part of A is */ 00091 /* not referenced. */ 00092 00093 /* LDA (input) INTEGER */ 00094 /* The leading dimension of the array A. LDA >= max(1,N). */ 00095 00096 /* B (input) REAL array, dimension (LDB,NRHS) */ 00097 /* The right hand side vectors for the system of linear */ 00098 /* equations. */ 00099 00100 /* LDB (input) INTEGER */ 00101 /* The leading dimension of the array B. LDB >= max(1,N). */ 00102 00103 /* X (input) REAL array, dimension (LDX,NRHS) */ 00104 /* The computed solution vectors. Each vector is stored as a */ 00105 /* column of the matrix X. */ 00106 00107 /* LDX (input) INTEGER */ 00108 /* The leading dimension of the array X. LDX >= max(1,N). */ 00109 00110 /* XACT (input) REAL array, dimension (LDX,NRHS) */ 00111 /* The exact solution vectors. Each vector is stored as a */ 00112 /* column of the matrix XACT. */ 00113 00114 /* LDXACT (input) INTEGER */ 00115 /* The leading dimension of the array XACT. LDXACT >= max(1,N). */ 00116 00117 /* FERR (input) REAL array, dimension (NRHS) */ 00118 /* The estimated forward error bounds for each solution vector */ 00119 /* X. If XTRUE is the true solution, FERR bounds the magnitude */ 00120 /* of the largest entry in (X - XTRUE) divided by the magnitude */ 00121 /* of the largest entry in X. */ 00122 00123 /* BERR (input) REAL array, dimension (NRHS) */ 00124 /* The componentwise relative backward error of each solution */ 00125 /* vector (i.e., the smallest relative change in any entry of A */ 00126 /* or B that makes X an exact solution). */ 00127 00128 /* RESLTS (output) REAL array, dimension (2) */ 00129 /* The maximum over the NRHS solution vectors of the ratios: */ 00130 /* RESLTS(1) = norm(X - XACT) / ( norm(X) * FERR ) */ 00131 /* RESLTS(2) = BERR / ( (n+1)*EPS + (*) ) */ 00132 00133 /* ===================================================================== */ 00134 00135 /* .. Parameters .. */ 00136 /* .. */ 00137 /* .. Local Scalars .. */ 00138 /* .. */ 00139 /* .. External Functions .. */ 00140 /* .. */ 00141 /* .. Intrinsic Functions .. */ 00142 /* .. */ 00143 /* .. Executable Statements .. */ 00144 00145 /* Quick exit if N = 0 or NRHS = 0. */ 00146 00147 /* Parameter adjustments */ 00148 a_dim1 = *lda; 00149 a_offset = 1 + a_dim1; 00150 a -= a_offset; 00151 b_dim1 = *ldb; 00152 b_offset = 1 + b_dim1; 00153 b -= b_offset; 00154 x_dim1 = *ldx; 00155 x_offset = 1 + x_dim1; 00156 x -= x_offset; 00157 xact_dim1 = *ldxact; 00158 xact_offset = 1 + xact_dim1; 00159 xact -= xact_offset; 00160 --ferr; 00161 --berr; 00162 --reslts; 00163 00164 /* Function Body */ 00165 if (*n <= 0 || *nrhs <= 0) { 00166 reslts[1] = 0.f; 00167 reslts[2] = 0.f; 00168 return 0; 00169 } 00170 00171 eps = slamch_("Epsilon"); 00172 unfl = slamch_("Safe minimum"); 00173 ovfl = 1.f / unfl; 00174 upper = lsame_(uplo, "U"); 00175 00176 /* Test 1: Compute the maximum of */ 00177 /* norm(X - XACT) / ( norm(X) * FERR ) */ 00178 /* over all the vectors X and XACT using the infinity-norm. */ 00179 00180 errbnd = 0.f; 00181 i__1 = *nrhs; 00182 for (j = 1; j <= i__1; ++j) { 00183 imax = isamax_(n, &x[j * x_dim1 + 1], &c__1); 00184 /* Computing MAX */ 00185 r__2 = (r__1 = x[imax + j * x_dim1], dabs(r__1)); 00186 xnorm = dmax(r__2,unfl); 00187 diff = 0.f; 00188 i__2 = *n; 00189 for (i__ = 1; i__ <= i__2; ++i__) { 00190 /* Computing MAX */ 00191 r__2 = diff, r__3 = (r__1 = x[i__ + j * x_dim1] - xact[i__ + j * 00192 xact_dim1], dabs(r__1)); 00193 diff = dmax(r__2,r__3); 00194 /* L10: */ 00195 } 00196 00197 if (xnorm > 1.f) { 00198 goto L20; 00199 } else if (diff <= ovfl * xnorm) { 00200 goto L20; 00201 } else { 00202 errbnd = 1.f / eps; 00203 goto L30; 00204 } 00205 00206 L20: 00207 if (diff / xnorm <= ferr[j]) { 00208 /* Computing MAX */ 00209 r__1 = errbnd, r__2 = diff / xnorm / ferr[j]; 00210 errbnd = dmax(r__1,r__2); 00211 } else { 00212 errbnd = 1.f / eps; 00213 } 00214 L30: 00215 ; 00216 } 00217 reslts[1] = errbnd; 00218 00219 /* Test 2: Compute the maximum of BERR / ( (n+1)*EPS + (*) ), where */ 00220 /* (*) = (n+1)*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i ) */ 00221 00222 i__1 = *nrhs; 00223 for (k = 1; k <= i__1; ++k) { 00224 i__2 = *n; 00225 for (i__ = 1; i__ <= i__2; ++i__) { 00226 tmp = (r__1 = b[i__ + k * b_dim1], dabs(r__1)); 00227 if (upper) { 00228 i__3 = i__; 00229 for (j = 1; j <= i__3; ++j) { 00230 tmp += (r__1 = a[j + i__ * a_dim1], dabs(r__1)) * (r__2 = 00231 x[j + k * x_dim1], dabs(r__2)); 00232 /* L40: */ 00233 } 00234 i__3 = *n; 00235 for (j = i__ + 1; j <= i__3; ++j) { 00236 tmp += (r__1 = a[i__ + j * a_dim1], dabs(r__1)) * (r__2 = 00237 x[j + k * x_dim1], dabs(r__2)); 00238 /* L50: */ 00239 } 00240 } else { 00241 i__3 = i__ - 1; 00242 for (j = 1; j <= i__3; ++j) { 00243 tmp += (r__1 = a[i__ + j * a_dim1], dabs(r__1)) * (r__2 = 00244 x[j + k * x_dim1], dabs(r__2)); 00245 /* L60: */ 00246 } 00247 i__3 = *n; 00248 for (j = i__; j <= i__3; ++j) { 00249 tmp += (r__1 = a[j + i__ * a_dim1], dabs(r__1)) * (r__2 = 00250 x[j + k * x_dim1], dabs(r__2)); 00251 /* L70: */ 00252 } 00253 } 00254 if (i__ == 1) { 00255 axbi = tmp; 00256 } else { 00257 axbi = dmin(axbi,tmp); 00258 } 00259 /* L80: */ 00260 } 00261 /* Computing MAX */ 00262 r__1 = axbi, r__2 = (*n + 1) * unfl; 00263 tmp = berr[k] / ((*n + 1) * eps + (*n + 1) * unfl / dmax(r__1,r__2)); 00264 if (k == 1) { 00265 reslts[2] = tmp; 00266 } else { 00267 reslts[2] = dmax(reslts[2],tmp); 00268 } 00269 /* L90: */ 00270 } 00271 00272 return 0; 00273 00274 /* End of SPOT05 */ 00275 00276 } /* spot05_ */